Perseus: A Fail-Slow Detection Framework for Cloud Storage Systems

Ruiming Lu, Erci Xu, Yiming Zhang,

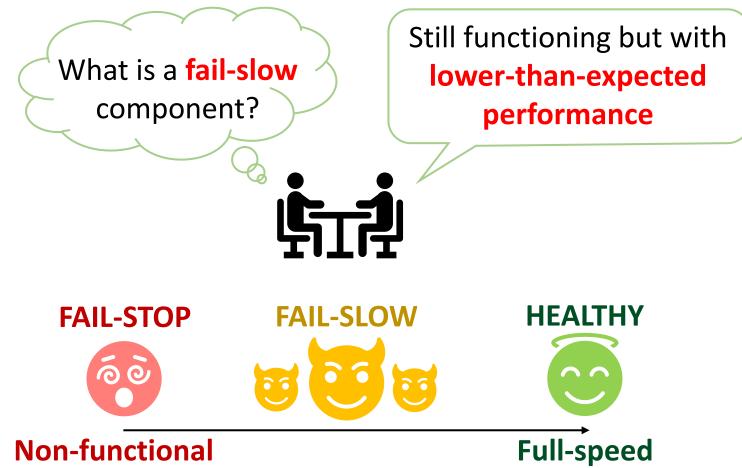
Fengyi Zhu, Zhaosheng Zhu, Mengtian Wang,

Zongpeng Zhu, Guangtao Xue, Jiwu Shu, Minglu Li, Jiesheng Wu

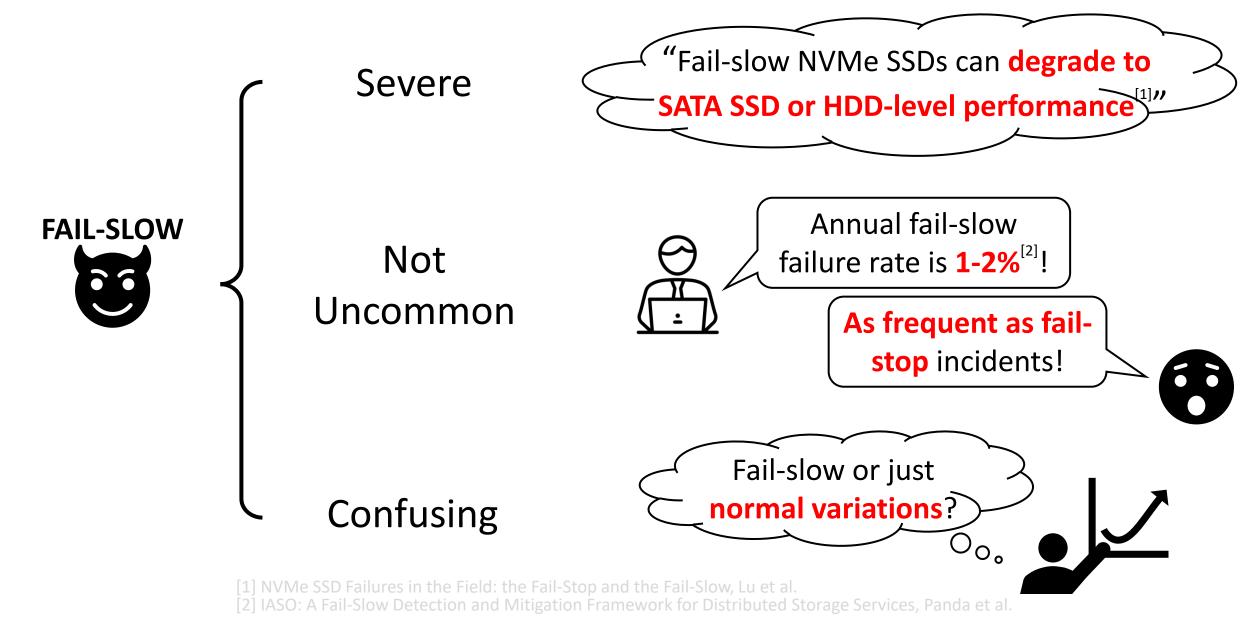
FAST¹ Data Center Instability

- Failures in The Wild
 - Fail-Slow
 - Fail-Stop
 - Byzantine

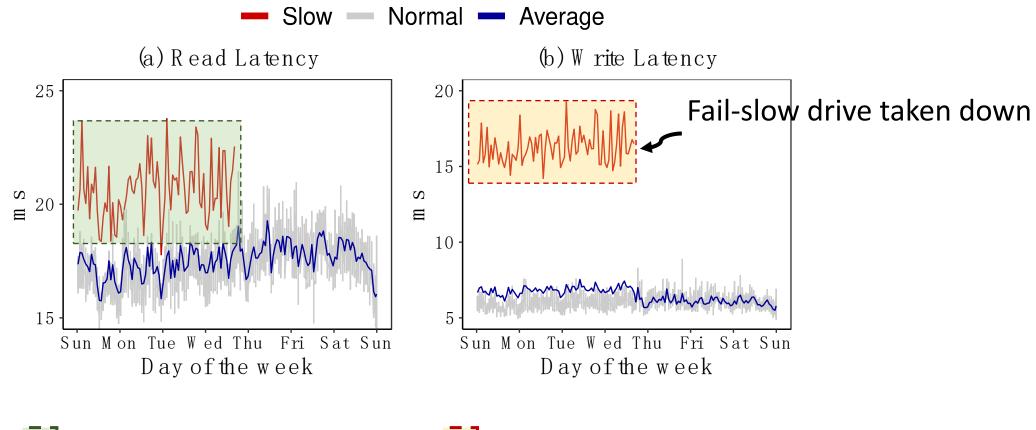
...



FAST⁷ Not A Problem?

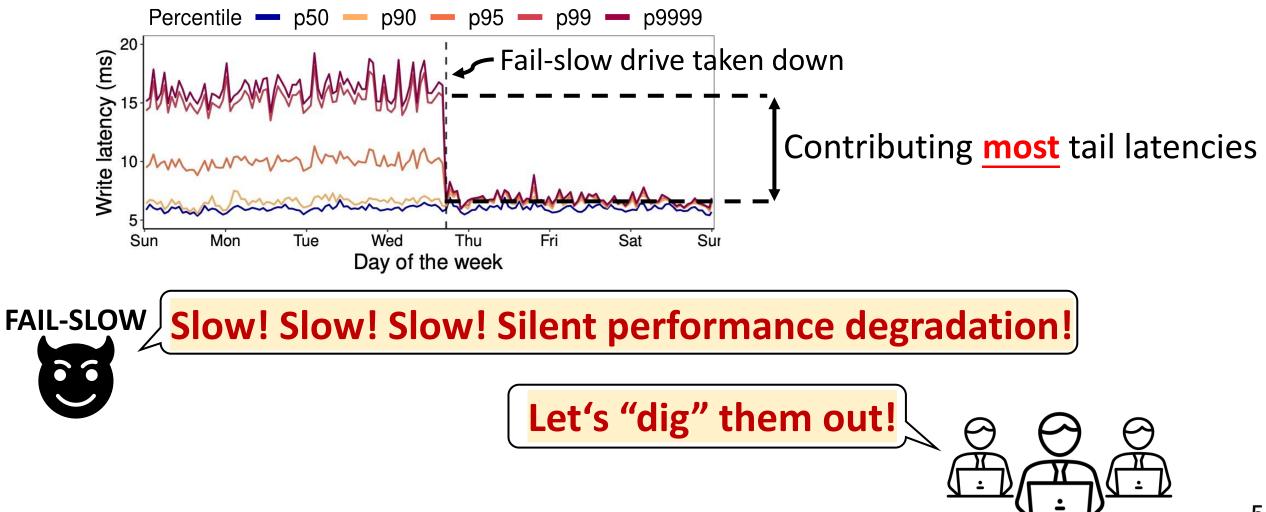


Fail-Slow in The Field:

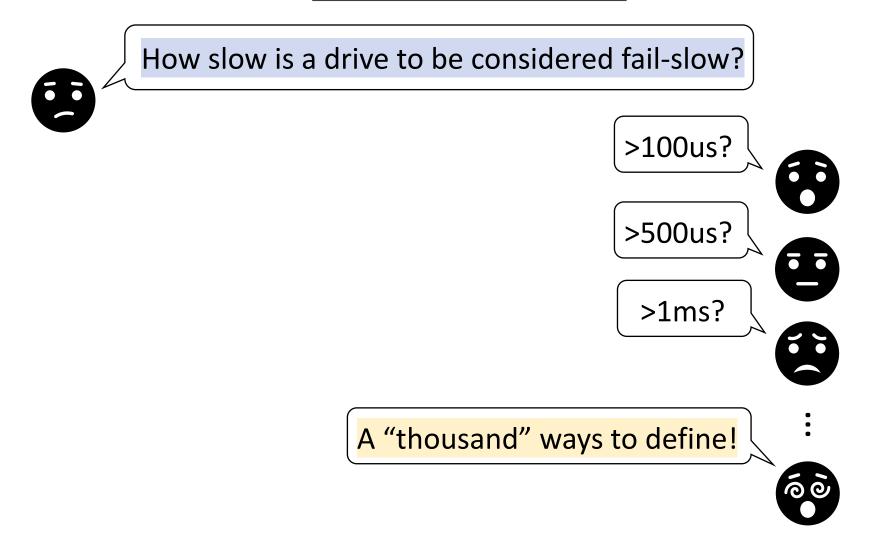


1.01-1.50X higher for read 2.06-3.65X higher for write

Fail-Slow in The Field:



• No Ground Truth in Identifying Fail-Slow



FAST⁷ Fail-Slow Detection (FSD)

• Previous FSD Studies Are

- Intrusive
 - Source Code Accessing/Altering
- Coarse-grained
 - Node-Level Detection

Capturing and Enhancing *In Situ* System Observability for Failure Detection

Peng Huang Johns Hopkins University Chuanxiong GuoJacob R.ByteDance Inc.M

Jacob R. Lorch Lidong Zhou Microsoft Research

Yingnong Dang Microsoft

IASO: A Fail-Slow Detection and Mitigation Framework for Distributed Storage Services

Biswaranjan Panda, Deepthi Srinivasan, Huan Ke*, Karan Gupta, Vinayak Khot, and Haryadi S. Gunawi*

Nutanix Inc.

University of Chicago*

Abstract

We address the problem of "fail-slow" fault, a fault where a hardware or software component can still function (does not fail-stop) but in much lower performance than expected. absolute failure of sub-components but can also gracefully handle the occurrence of performance faults.

In this context, our work in this paper makes the two following contributions:

(1) Design and implementation of a fail slave mitiastica

FAST^T₂₃ Fail-Slow Detection (FSD)

- Our Work Shares
 - Years of Experiences in FSD
 - A Practical FSD Framework named Perseus
 - Root Cause Analysis

FAST⁷ Outline

FAST¹/₂₃ Our Dataset

• <u>248K+</u> drives

- 55% NVMe SSD + 45% SATA HDD
- 4 manufacturers
- 9 major drive models
- Diverse cloud services:
 - Log service, big data, E-commerce, table storage, stream processing, database, object storage, data warehouse, block storage

FAST¹/₂₃ Our Dataset

- 248K+ drives
- <u>10-month</u> performance logs (iostat)
 - Latency/throughput time series
- Test dataset released
 - https://tianchi.aliyun.com/dataset/144479

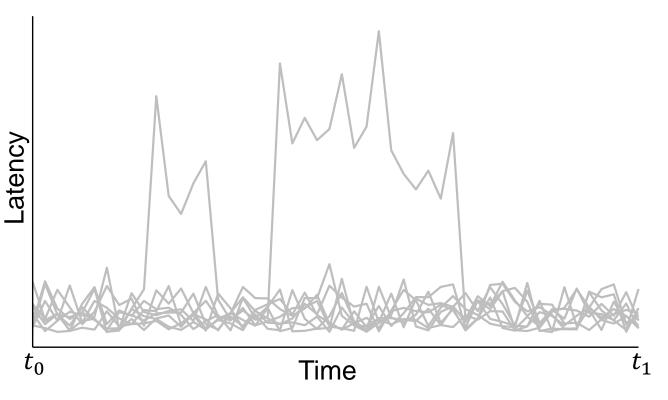
FAST¹ Ideal Fail-Slow Detection Should Be ...?

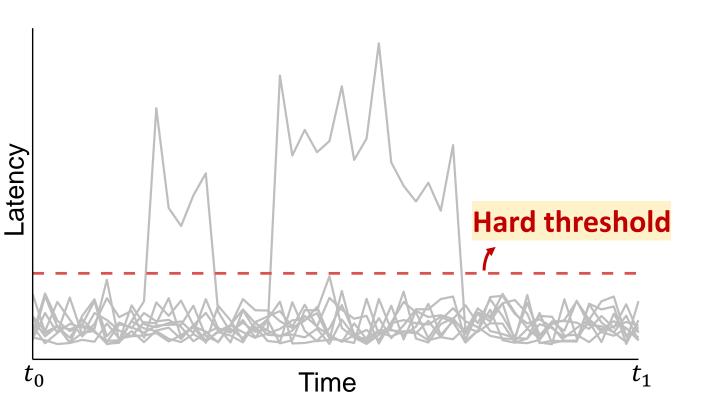
Efficient Fail-Slow Detection

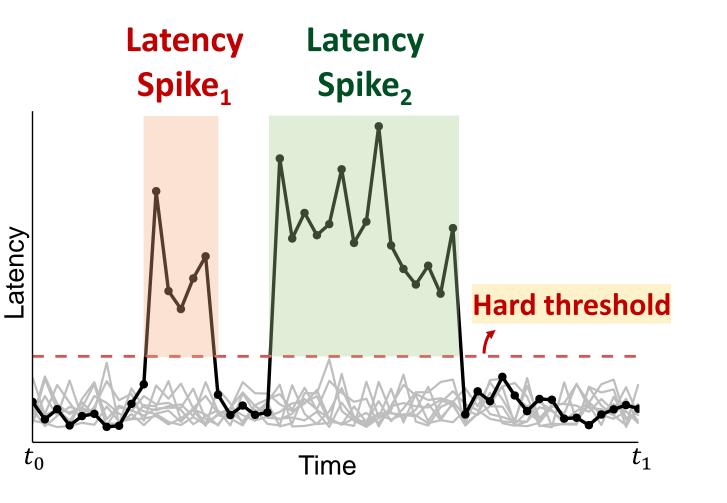
Non-intrusive

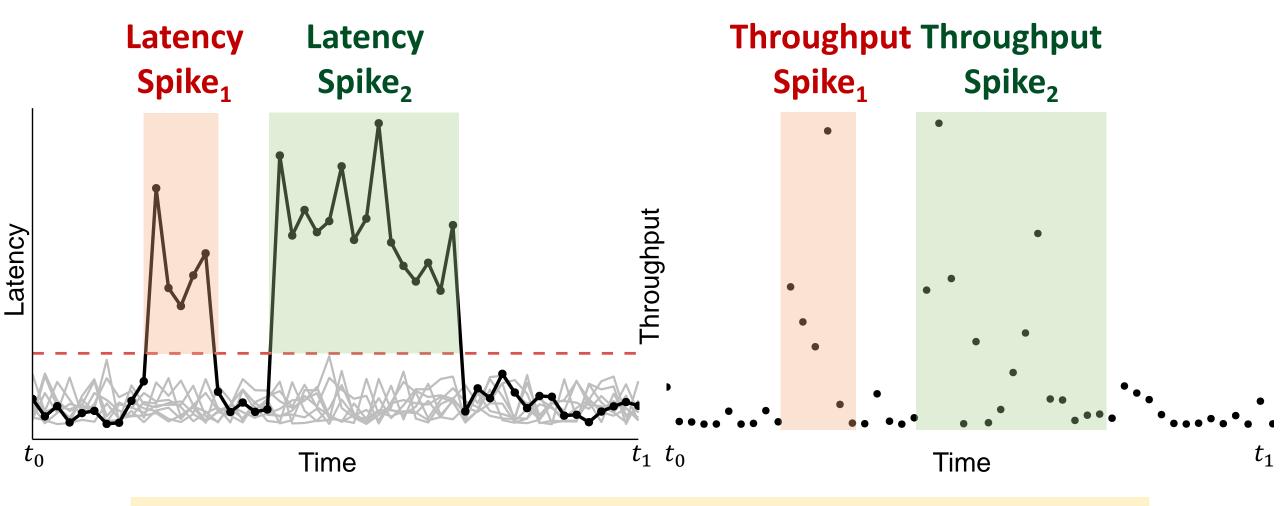
No source code altering External performance log-based

High precision/recall rate

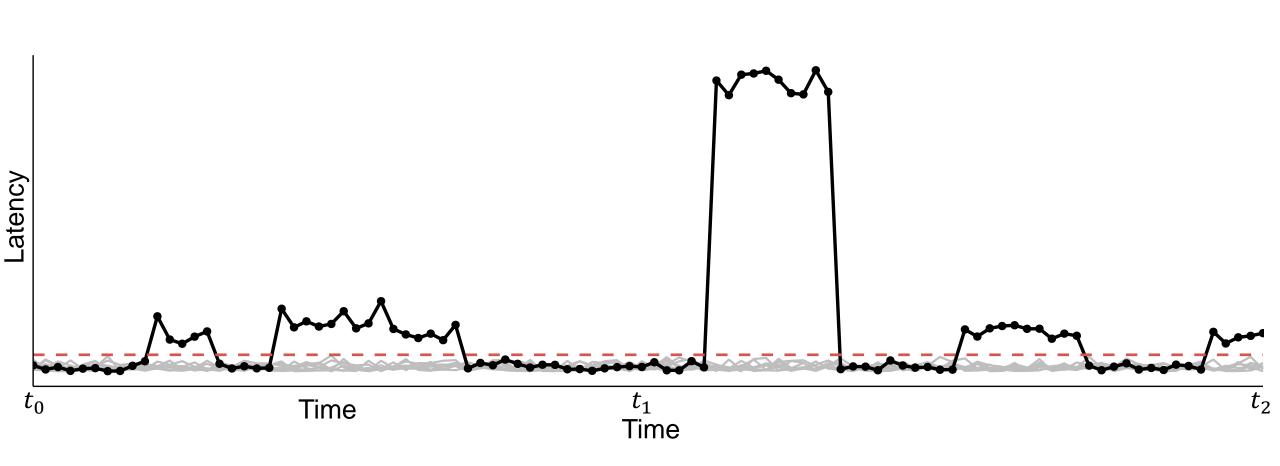


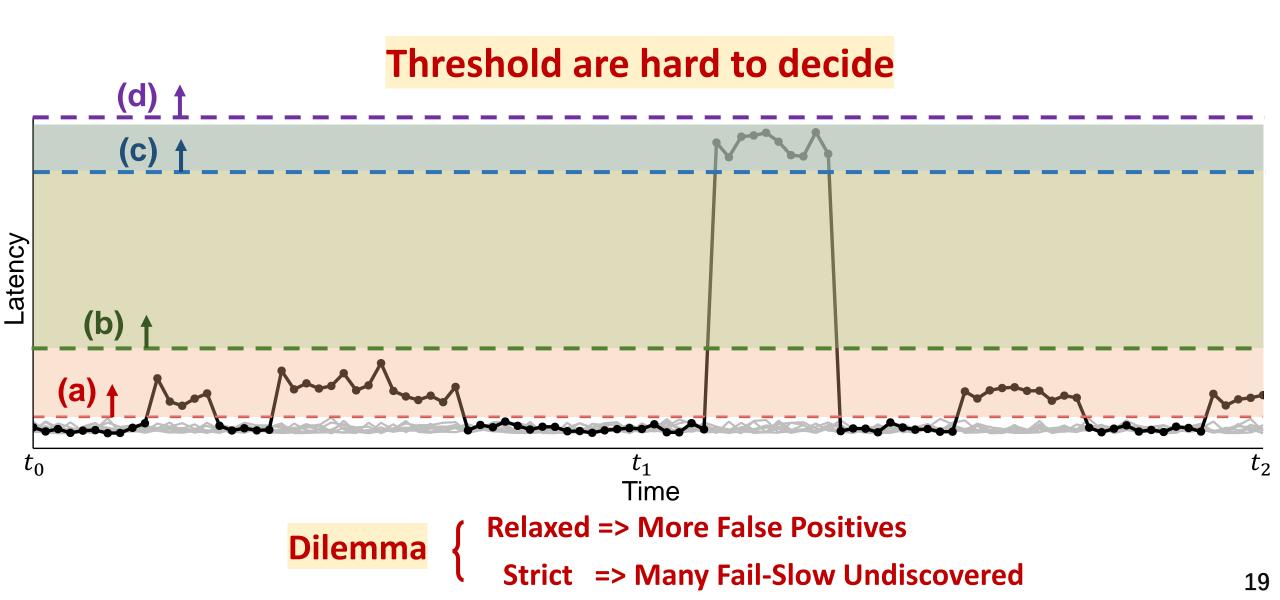




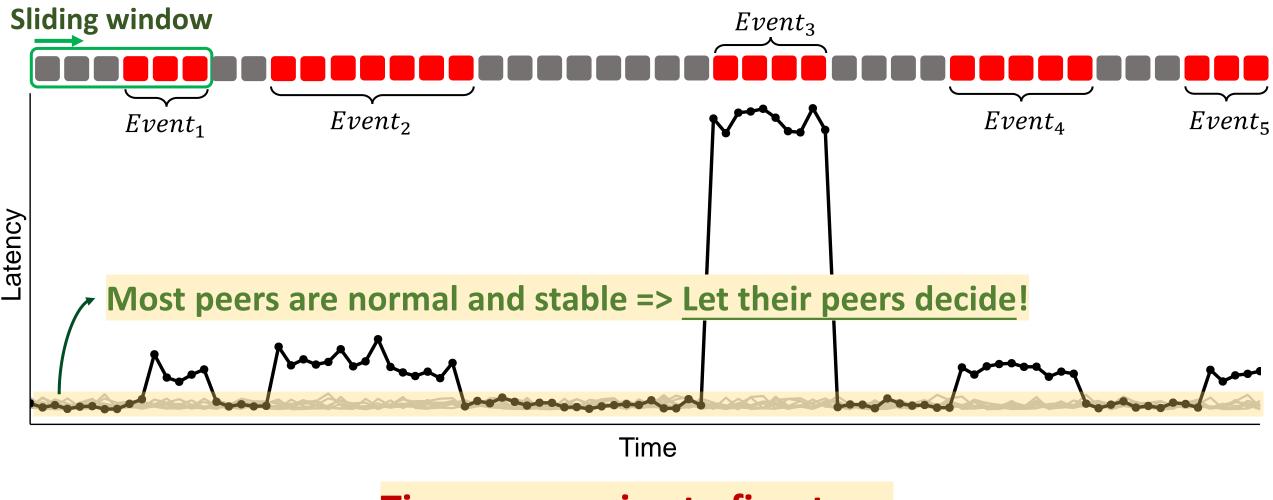


Workload bursts are common causes of latency variations





FAST³ Failed Attempt: Peer Evaluation

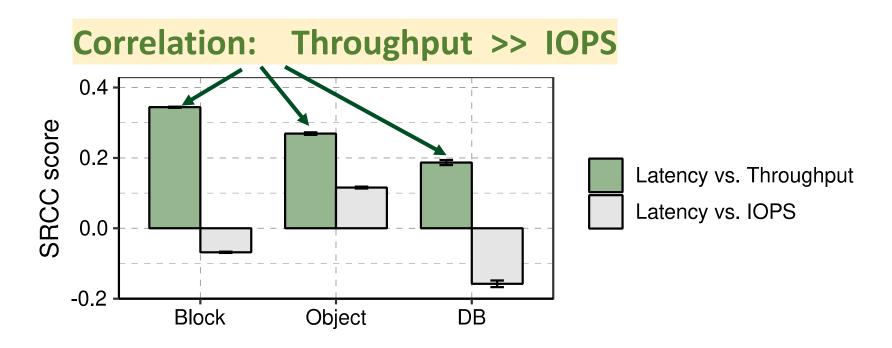


Time-consuming to fine-tune

FAST^T Design Guidelines (I)

Insight: "Workload pressure can affect latency variations"

• Throughput or IOPS?

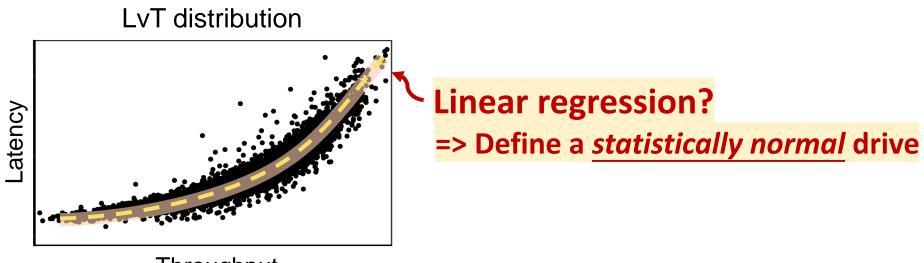


Guideline 1: Use throughput to model the workload pressure

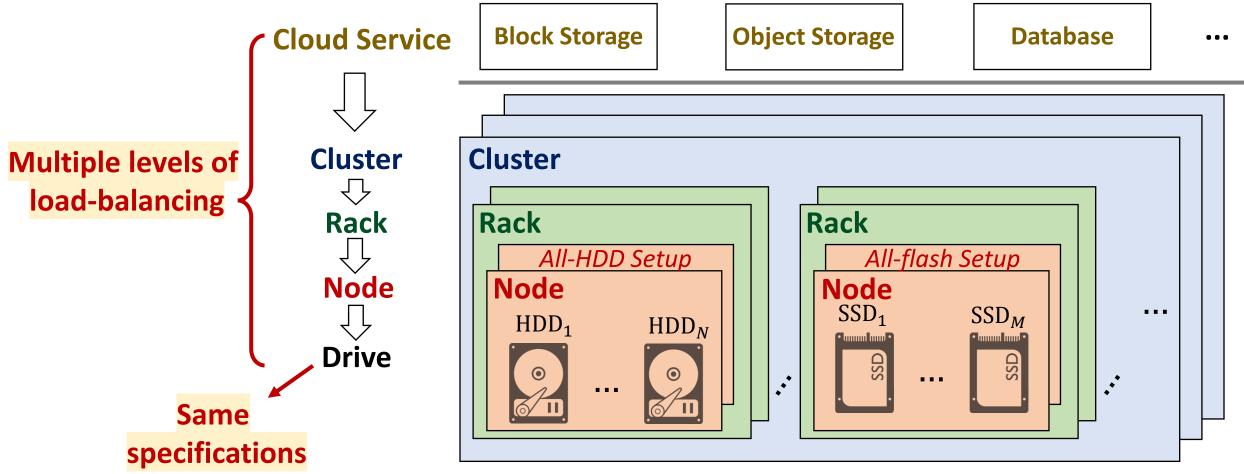
Insight: "Workload pressure can affect latency variations"

• How to model such a positive correlation?

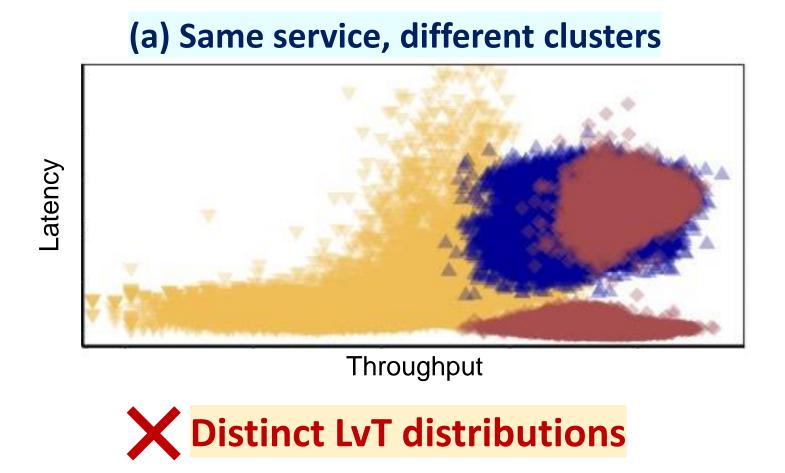
Guideline 2: Model the latency-vs-throughput (LvT) distribution

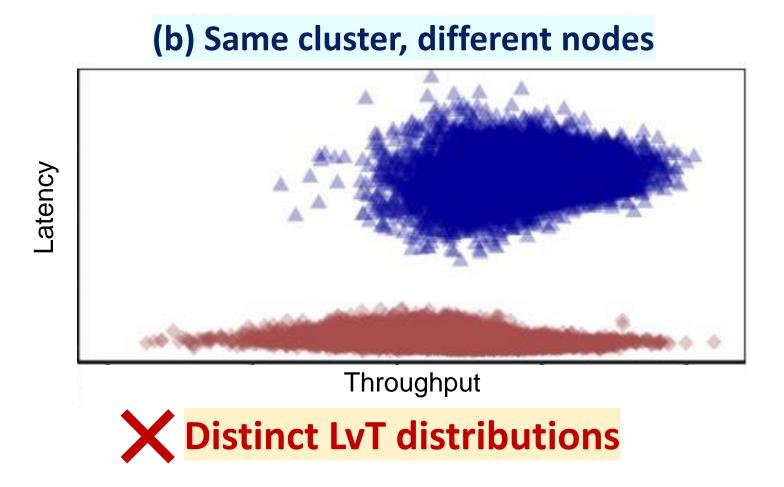


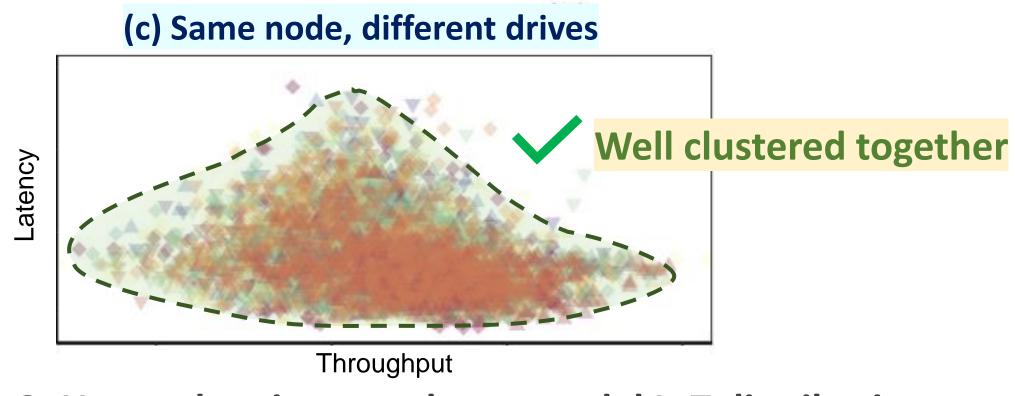
Throughput



- Need to determine the scope of drives to model
 - Drives from the same service?
 - Drives from the same cluster?
 - Drives from the same <u>node</u>?







Guideline 3: Use node-wise samples to model LvT distribution

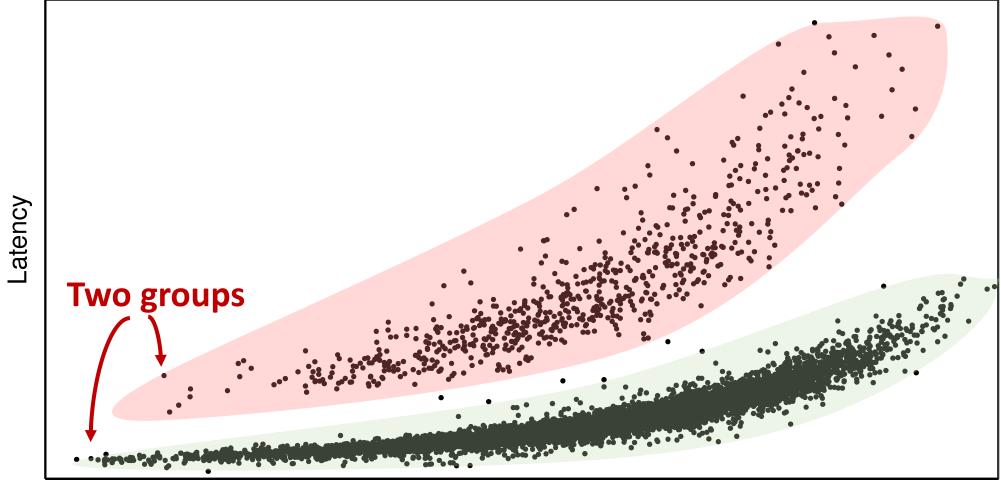
Insight: "No golden standards to identify fail-slow "

Guideline 4: Non-binary output

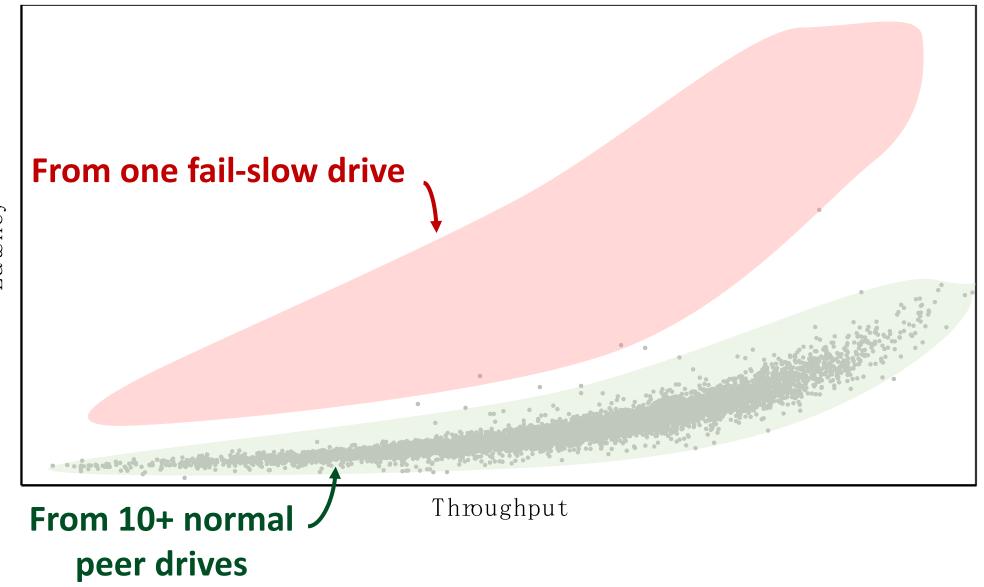
• Model the likelihood of fail-slow

FAST⁷ Outline

FAST¹/₂₃ Raw Data

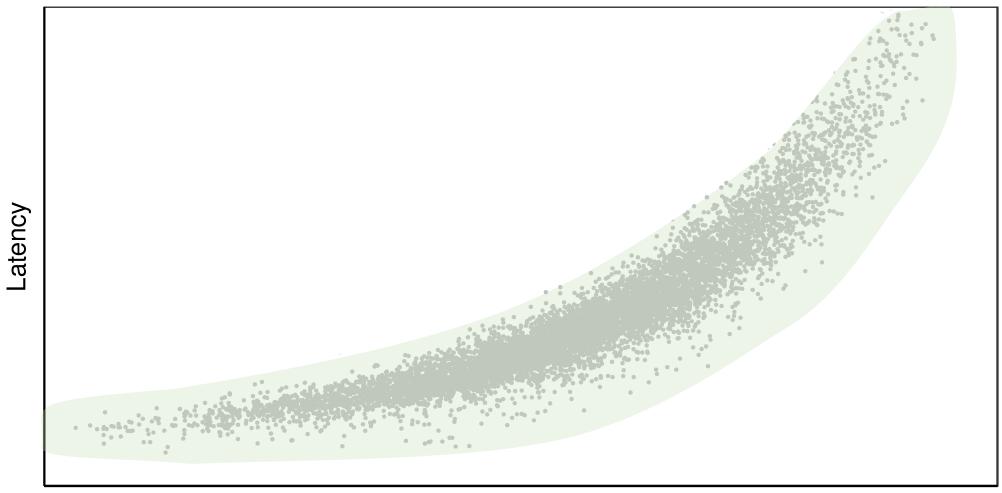


Throughput



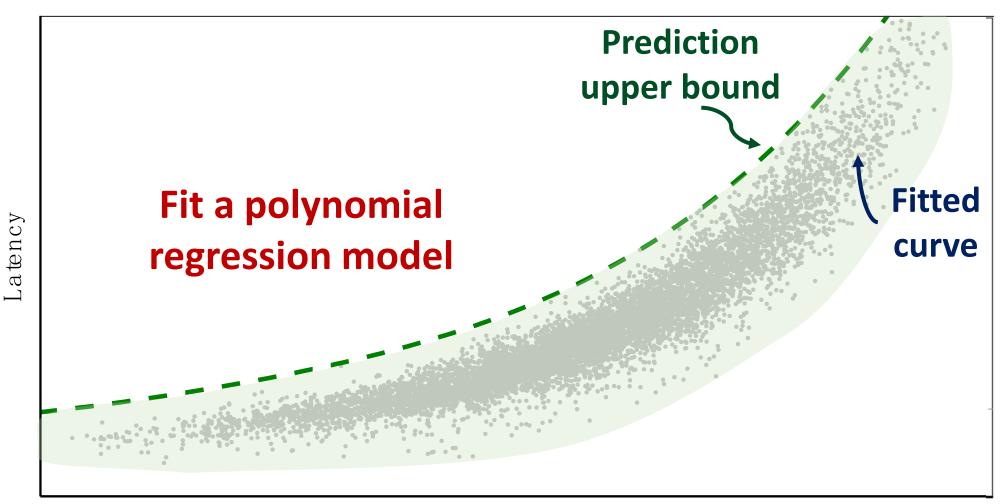
Latency

FAST¹/₂₃ Step 1: Outlier Detection



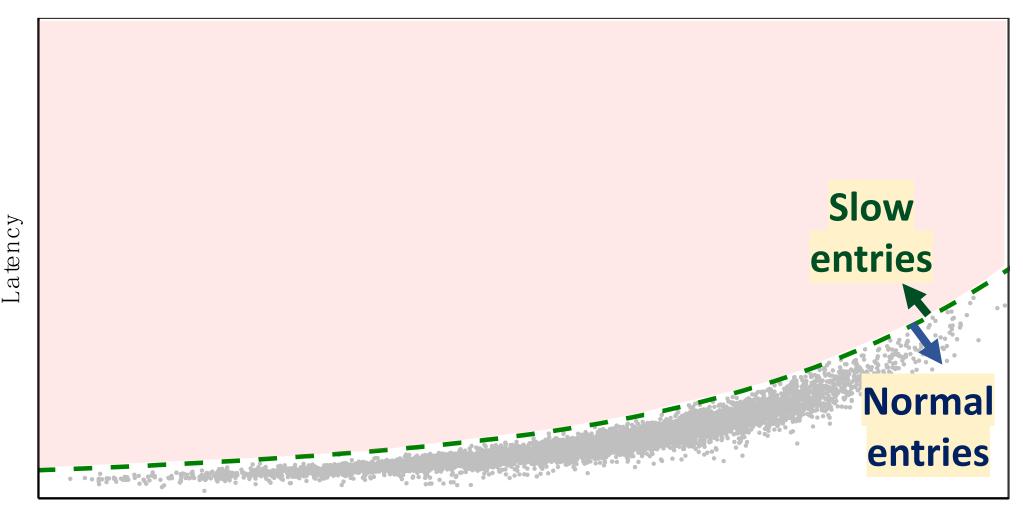
Throughput

FAST³ Step 2: Building Regression Model



Throughput

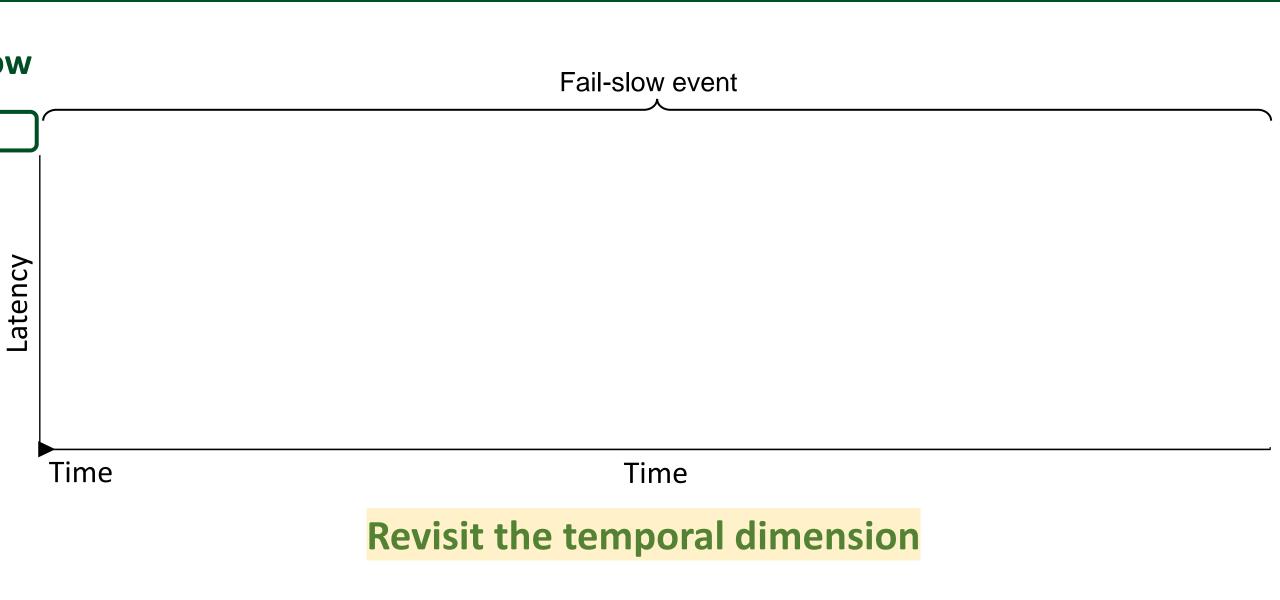
FAST³ Step 2: Building Regression Model



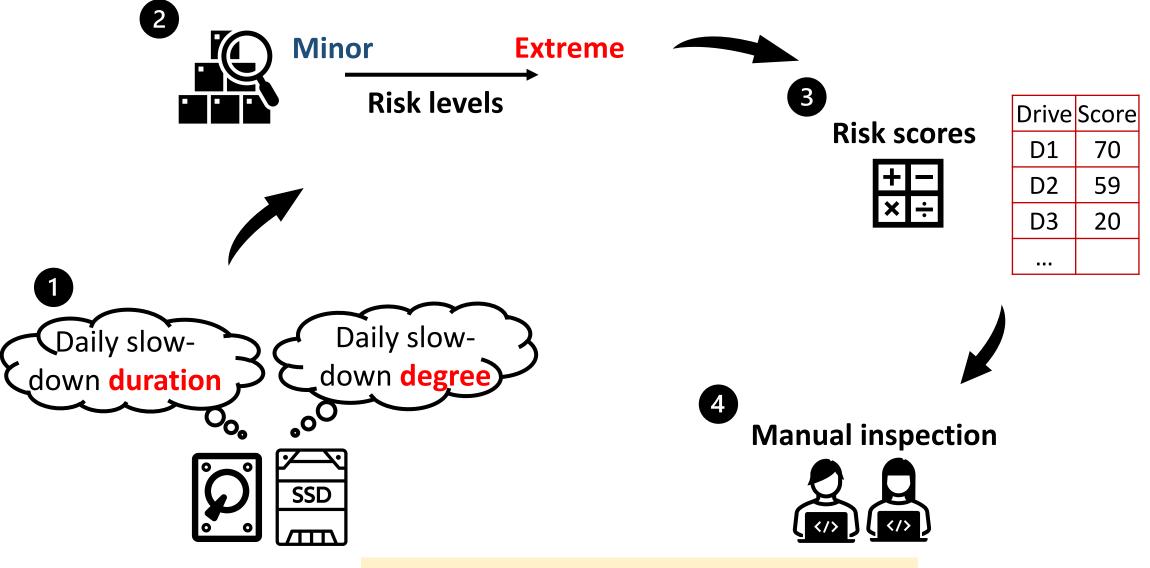
Throughput

Prediction upper bounds as adaptive latency thresholds without fine-tuning

FAST^T Step 3: Identifying Fail-Slow Event



FAST¹/₂₃ Step 4: Evaluating Risk



Quantify the slowness of drives

FAST⁷ Outline

FAST¹/₂₃ Evaluation Benchmark

- Built and released our self-assembled test dataset
 - Clear labels (fail-slow or not)
 - 15 days of operational traces
 - 41K drives
 - ~300 fail-slow drives

Fail-Slow Detection Open Dataset	CC BY-NC-SA 4.0		New a notebook
ontent Notebook Comment			
Description			
This dataset aims at fail-slow detection on storage devices. Please	refer to our paper (to appear i	n USENIX FAST 2023) for more details.	
Data List			
Name	Date	Size	Download
README.md	2023-01-13	1.42KB	يل.
1_cluster_ABCDE.zip	2023-01-25	379.70MB	يلى بل
2_cluster_FGHIJ.zip	2023-01-25	1.48GB	Ł
cluster_info.csv	2023-01-25	555.00Bytes	Ł
slow_drive_info.csv	2023-01-25	9.45KB	ىكى ئ
5_cluster_PQST.zip	2023-01-25	556.42MB	ىكى ئ
7_cluster_UVWXY.zip	2023-01-25	1.01GB	Ł
4_cluster_MNO.zip	2023-01-25	1.07GB	Ł
3_cluster_KL.zip	2023-01-25	1.42GB	소
6_cluster_R.zip	2023-01-25	1.86GB	يلى بل

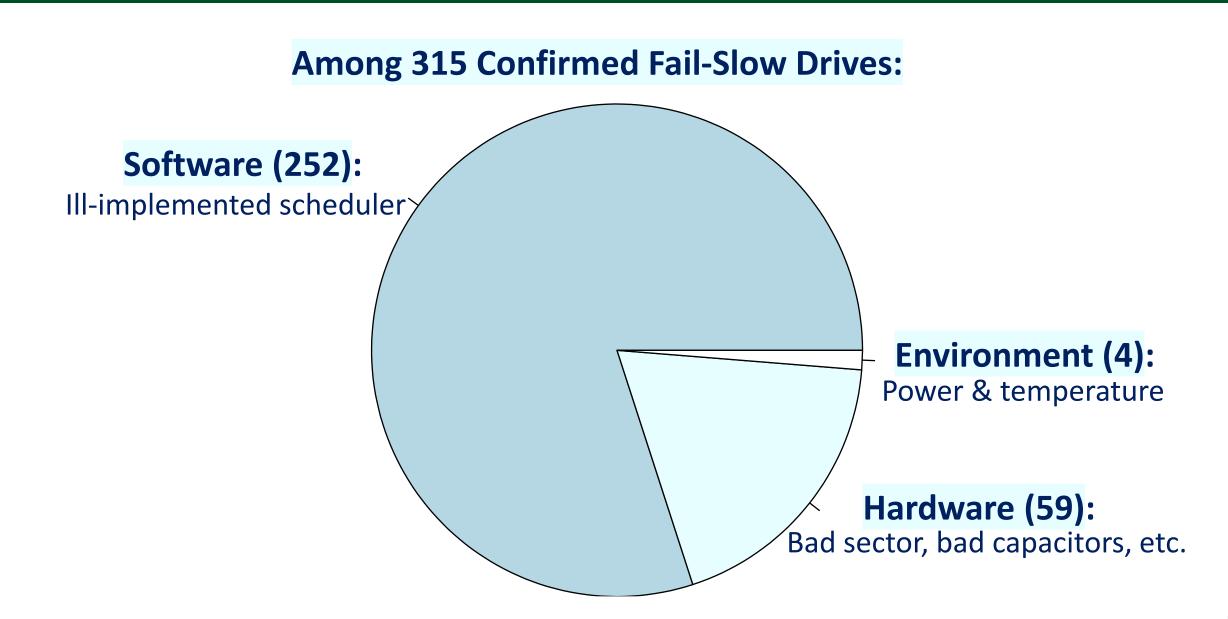
https://tianchi.aliyun.com/dataset/144479

FAST⁷₂₃ Evaluations

- Perseus outperforms all previous attempts (§5.4)
- Effectiveness of Perseus's Design Choices (§5.5)
- Reduce Tail Latency By 31-48% (§5.6)
- Root Cause Analysis (§6)

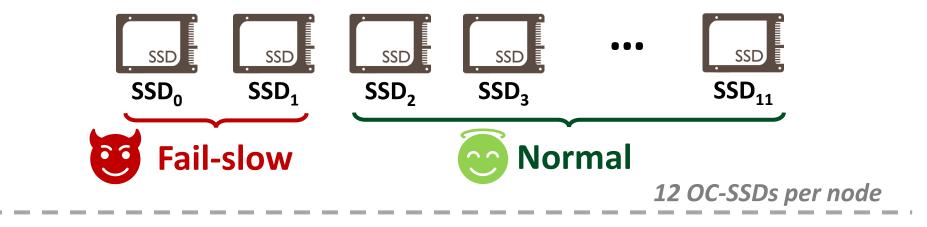
More details in the paper!

FAST¹ Root Cause Distribution



Case I: In Open-Channel SSD Cluster

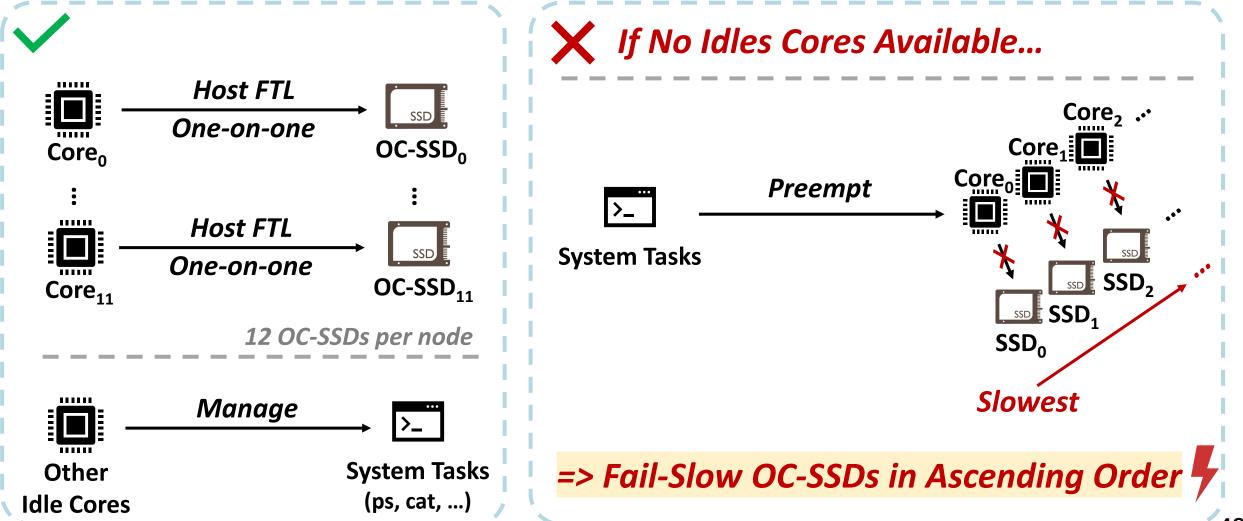
1. Every node always has 2 fail-slow drives



2. Latency levels follow ascending order of logical IDs

FAST^T Root Cause: Software

Case I: In Open-Channel SSD Cluster



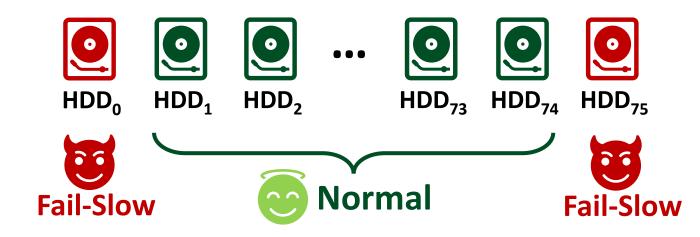
FAST^T Root Cause: Software

Case II: In All-HDD Cluster

1. Fail-slow drives always appear in fixed pairs

76 HDDs per node

Two fail-slow disks in a node:



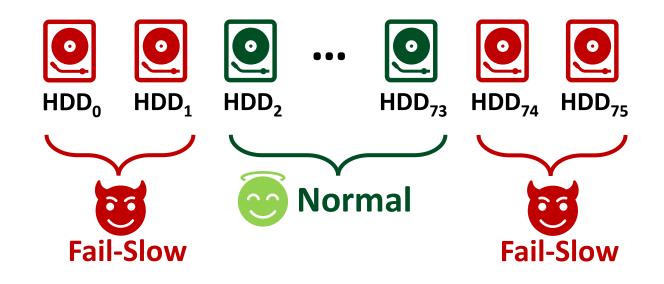
FAST^T Root Cause: Software

Case II: In All-HDD Cluster

1. Fail-slow drives always appear in fixed pairs

76 HDDs per node

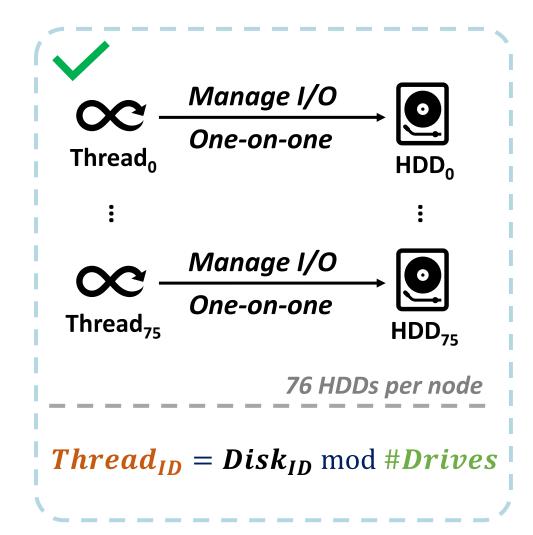
Four fail-slow disks in a node:

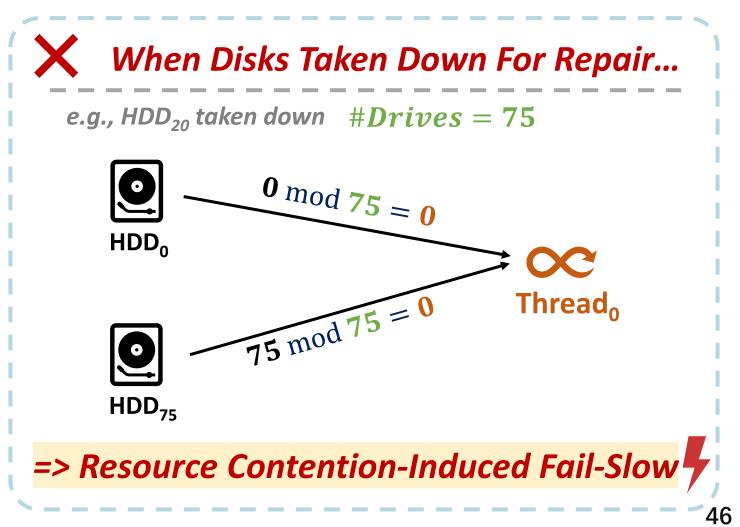


Case II: In All-HDD Cluster

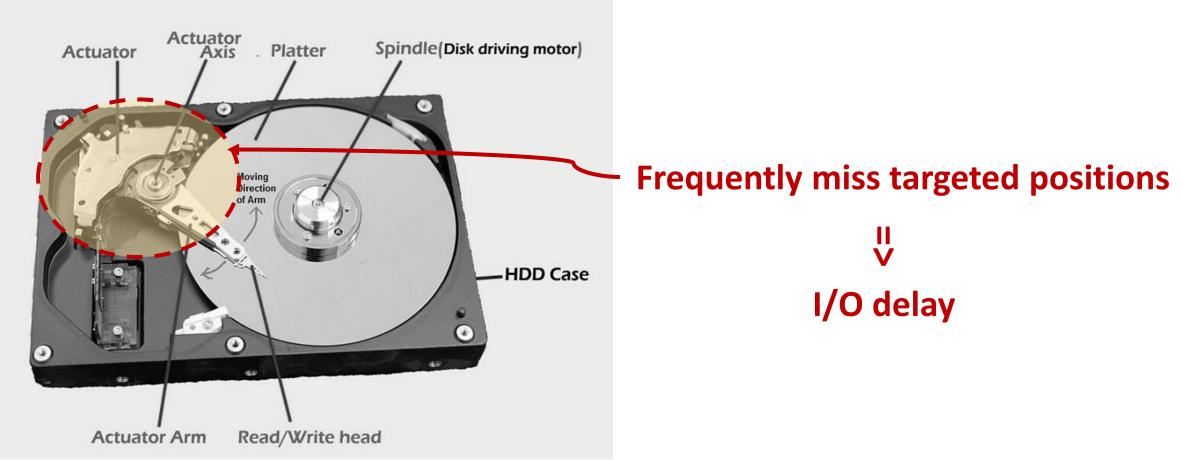
- **1.** Fail-slow drives always appear in fixed pairs
- 2. All fail-slow drives are experiencing similar slowdown
- **3.** #*Fail-slow* = $2 \times #Offline$

Case II: In All-HDD Cluster



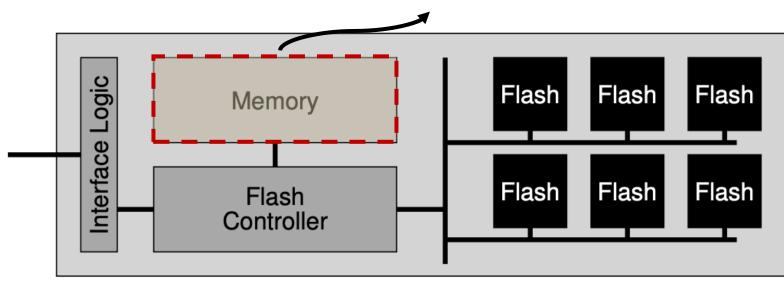


• Rotor Eccentricity



Source: https://www.techintangent.com/hard-disk-description/

- Rotor Eccentricity
- Bad Capacitors



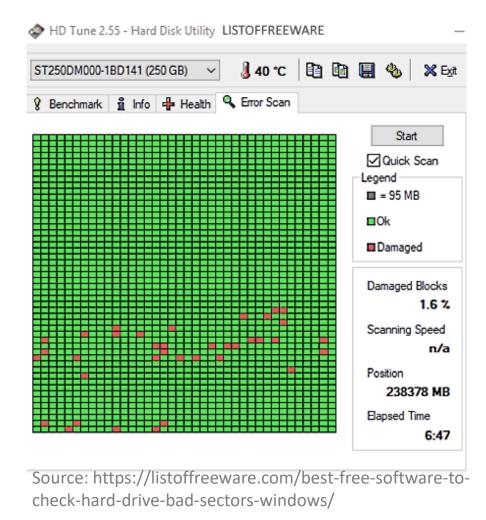
DRAM as an internal write-back cache

Source: Operating Systems: Three Easy Pieces

DRAM capacitors failed => **Delayed writes**

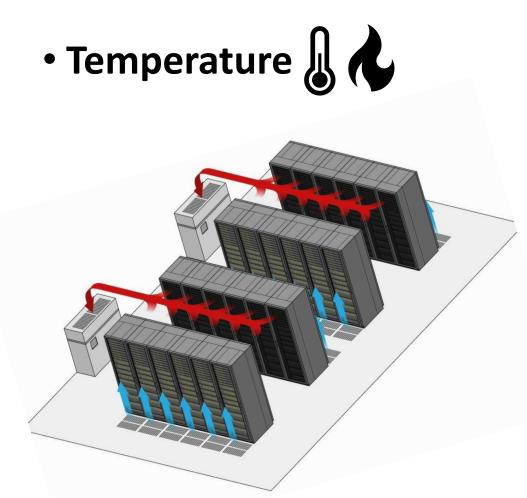
- Rotor Eccentricity
- Bad Capacitors
- Bad Sectors:

Data reallocate to spare sectors



- Rotor Eccentricity
- Bad Capacitors
- Bad Sectors:

FAST¹/₂₃ Root Cause: Environment



Source: https://www.upsite.com/blog/helping-your-datacenter-breath-easier-with-good-air-flow-management/

Source: https://www.ecsintl.com/how-datacenters-can-effectively-manage-power-surges/

FAST⁷/₂₃ Summary

Perseus

Detection Framework

Non-intrusive (Performance) log-based No source code altering

Accurate

Recall/precision rate > 0.99

Fail-Slow Detection

Efficient

Fine-grained Device-level detection

✓ General

One set of parameters fits all scenarios

Storage Devices

...

Adaptable to Other Problem Domains

Thank you!

Perseus: A Fail-Slow Detection Framework for Cloud Storage Systems

Ruiming Lu, Erci Xu, Yiming Zhang, Fengyi Zhu, Zhaosheng Zhu, Mengtian Wang, Zongpeng Zhu, Guangtao Xue, Jiwu Shu, Minglu Li, Jiesheng Wu

Contact email: lrm318@sjtu.edu.cn

FAST^T Evaluations

Effectiveness of Perseus's design
choices (§5.5)

Perseus's design tradeoffs (§5.5)

(a) Precision

Parameter	Range	Description						
S1: Outlier detection (§4.2)								
PCA	On/Off	Transform the coordinates w.r.t. the						
		principal components.						
DBSCAN On/Off Density-based outlier detection.								
	S3: Identifying fail-slow event (§4.4)							
X	95~99.9	Use the $X\%$ prediciton upper bound as						
Λ	95,099.9	the latency upper bound.						
	S4: Evaluating risk (§4.5)							
min_score	1~100	Risk score threshold.						
N	1~15	Evaluate the risk score of the most						
1		recent N days.						

Metric	w/o	w/o	p95	p99	p999	Deployed				
	Outlier	PCA								
Full-set										
Precision	0.98	0.55	0.99	1.00	1.00	0.99				
Recall	0.51	0.43	0.99	0.93	0.93	1.00				
MCC	0.71	0.49	0.99	0.96	0.96	0.99				
	Subset (excluding software-induced)									
Precision	0.95	0.36	0.94	0.98	1.00	0.94				
Recall	0.82	0.91	0.95	0.92	0.95	1.00				
MCC	0.88	0.57	0.95	0.95	0.98	0.97				

	15 -	0.46	0.81	98.0	96 0	0.97	0 99	1	1	1	1	1	1	1			- 1.0
ŝ																	
day(s)						0.97		1	1	1	1	1	1	1			
Last N da	7 -	0.46	0.81	0.86	0.96	0.97	0.99	1	1	1	1	1	1	1			
	5 -	0.46	0.81	0.86	0.96	0.97	1	1	1	1	1	1	1	1			
-as	3 -	0.46	0.81	0.86	0.96	0.97	1	1	1	1	1	1	1	1			- 0.8
_	1 -	0.46	0.81	0.86	0.95	0.90	1	1	1	1	1	1	1	1			
(b) Recall																	
	15 -	0.96	0.95	0.95	0.95	0.95	0.94	0.93	0.91	0.88	0.86	0.82	0.77	0.71			0.0
(s)	10 -	0.96	0.95	0.95	0.95	0.94	0.93	0.91	0.87	0.81	0.74	0.68	0.64	0.62			0.6
day(s)	7 -	0.96	0.95	0.95	0.95	0.94	0.92	0.87	0.76	0.70	0.64	0.61	0.58	0.57			
Last N	5 -	0.96	0.95	0.95	0.95	0.94	0.89	0.80	0.67	0.63	0.58	0.56	0.20	0.19			
as	3 -	0.96	0.95	0.95	0.94	0.92	0.71	0.65	0.51	0.21	0.18	0.17	0.17	0.16			
_	1 -	0.96	0.95	0.90	0.62	0.23	0.20	0.19	0.19	0.16	0.13	0.09	0.09	0.09			0.4
							(c)	MC	C								
	15 -	0.66	0.88	0.90	0.95	0.96	0.97	0.96	0.96	0.94	0.92	0.91	0.87	0.84			
(s)	10 -	0.66	0.88	0.90	0.95	0.95	0.96	0.95	0.93	0.90	0.86	0.82	0.80	0.78			0.2
ast N day(s)-	7 -	0.66	0.88	0.90	0.95	0.95	0.96	0.93	0.87	0.84	0.80	0.78	0.76	0.75			0.2
ţ	5 -	0.66	0.88	0.90	0.95	0.95	0.94	0.89	0.82	0.79	0.76	0.75	0.45	0.43			
as	3 -	0.66	0.88	0.90	0.95	0.94	0.84	0.81	0.71	0.45	0.43	0.42	0.41	0.40			
_	1 -	0.66	0.88	0.88	0.77	0.46	0.45	0.43	0.43	0.40	0.36	0.30	0.30	0.30			~ ~
		i	5	10	15	20	30	40	50	60	70	80	90	100			0.0
Risk score threshold (min_score)																	

- 1.0	Metric	Thresh-	Thresh-	Peer	IASO-	PERSEUS-					
		Stat	Emp	Eval	Based	Deployed					
	Full-set										
	Precision	1.00	1.00	0.98	0.48	0.99					
- 0.8	Recall	0.52	0.02	0.57	0.24	1.00					
- 0.0	MCC	0.72	0.14	0.74	0.32	0.99					
	Subset (excluding software-induced)										
	Precision	1.00	1.00	1.00	0.45	0.94					
	Recall	0.71	0.09	0.65	0.61	1.00					
- 0.6	MCC	0.84	0.30	0.80	0.52	0.97					