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Abstract

Elastic Block Storage (EBS) has a pivotal role in modern data
center infrastructure, providing reliable, high-performance
and !exible block storage service to users. In Alibaba Cloud,
EBS is the most widely used service and has been supporting
the operation of millions of virtual disks. However, even with
layers of load balancing and caching, we still observe signi"-
cant tra#c skewness across the EBS stack. This motivates us
to comprehensively investigate symptoms and root causes
behind the tra#c patterns and, more importantly, explore
the "xes for the identi"ed issues.

In this paper, we collect 310 million IO traces from approx-
imately 60k virtual machines and 140k virtual disks deployed
in our EBS. Based on extensive statistical analysis, we ex-
amine the tra#c skewness across multiple components of
the EBS stack. We identify four typical symptoms related to
the IO virtualization framework, tra#c throttle, storage clus-
ter management and cache. For each symptom, we further
explore the potential solutions along with the challenges.

CCS Concepts: • General and reference→ Measurement;
• Computer systems organization→ Cloud computing.

Keywords: Compute-Storage Disaggregation, Elastic Block
Storage, Load Balancing, Cache
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1 Introduction

Elastic Block Storage (EBS) [1, 2, 4, 5, 12] is a fundamental
component in cloud infrastructure. EBS provides reliable,
scalable and high-performance storage in the form of virtual
block device (a.k.a., virtual disk, VD). A prevalent architec-
tural design in modern EBS systems is “compute-to-storage
disaggregation”, allowing independent design, deployment,
and scaling of compute and storage resources.

In Alibaba Cloud, the EBS system also follows the compute-
storage disaggregation design. Speci"cally, when a user is-
sues an IO request to a VD, the request "rst reaches the
hypervisor of the compute node that hosts the VM. The
hypervisor then forwards the request to the storage clus-
ter using a Remote Procedure Call (RPC) framework on the
intra-DC network. Inside the storage cluster, an incoming
request would go through two layers: the block server in the
forwarding layer for address translation (i.e., from VD’s LBA
to o$set in a "le) and the chunk server in the distributed "le
system layer for "nally persisting the data to the SSDs.

Along the path, EBS has employed multiple levels of load
balancing and caching for high performance and availability.
For example, the hypervisor attaches IO requests to worker
threads in a round-robin manner. As an another example,
EBS splits the address space of VD into "xed size segments
and allocate them to di$erent block servers to avoid hotspots.
Unfortunately, in the "eld, we have still been observing se-
vere workload skewness. For example, the hottest worker
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of the hypervisor experiences 2.6 times the workload of the
coldest worker on average.

While there are a spate of works studying the tra#c of EBS-
like systems, their "ndings can be limited or inconclusive for
two reasons. First, their scale is small or speci"c as they only
studied up to 6k VDs [33, 35] or focused on workloads driven
by certain applications (e.g., virtual desktop in [33] and high-
performance computing in [31]). Second, the analysis are not
comprehensive, either focusing on the compute cluster [33]
or the forwarding layer [34, 37].
In this paper, we examine the IO tra#c of EBS at scale

from an end-to-end perspective. With tra#c from approxi-
mately 60k VMs and 140k VDs monitored, we have gathered
two main datasets for the study: trace and metric. The trace
dataset is a per-IO record that tracks the latency of VD IO
across various EBS components. Besides, the trace includes
block layer-related information, such as opcode, IO size, and
o$set. Due to the large volume of the trace, we randomly
sampled the IO requests at a rate of 1/3200. The second
dataset, called metric, is a statistical aggregation of the IO
traces. It calculates the sum/average of throughput, IOPS
and IO sizes of all the requests (i.e., no downsampling) at
di$erent levels of EBS (e.g., block server of forwarding layer)
on a second-level granularity.
The two datasets enable us to conduct a thorough and

in-depth revisit on the EBS tra#c patterns and subsequently
discuss the shortcomings of the existing load balancing and
cache design. For each identi"ed issue, we qualitatively present
the symptoms, analyze the root causes, and propose poten-
tial solutions. More importantly, we discuss the challenges
as why simple "xes and known techniques may not work
or only partially address the problem. We have made the
dataset publicly available1. We hope this work can motivate
future research on these open-ended topics. The "ndings of
this paper include the followings:

• The baseline statistics (§3) reveal that both spatial and
temporal skewness are prevalent across the EBS stack.
Moreover, contrary to prior work [33], skewness is much
worse than previous assumptions and exhibits stronger
read skewness. This motivates us to rethink and discuss the
design of load balancer on both the compute and storage
ends.

• We discover the load balancer in the hypervisor (§4) is
ine#cient as tra#c tends to concentrate on a small number
of VM’s IO queues. The root cause is the round-robin based
binding between IO queue and worker thread causes a few
worker threads to handles the majority of the tra#c. We
further evaluate the limitations of the proposed rebind-
based balancer in our scenario and discuss the potentials
of a hardware-o%oading solution.

• We study the hypervisor’s throttling mechanism upon
workload bursts (§5) and why the existing approach on

1We have release our dataset at https://tianchi.aliyun.com/dataset/185310.
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Figure 1. Architecture of our Elastic Block Storage. VM:
Virtual Machine; VD: Virtual Disk; QP: IO Queue Pair of

the virtual disk;WT:Worker Thread of the hypervisor; Seg:
Segment.

limiting the VD tra#c with a hard threshold is suboptimal
to bandwidth utilization. We then propose a more !exible
throttle model to better harvest VM’s bandwidth during
bursts.

• We observe the migration and reallocation of VD’s tra#c
at the forwarding layer of the storage cluster can be un-
necessarily frequent (§6). The root cause is the heuristic
balancer design to level the workload of block servers. We
then discuss and explore a more accurate heuristic based
on the tra#c prediction.

• We "nd that even with page cache in the VM, there are
still signi"cant LBA hotspots (§7). Based on this, we move
on to explore alternative opportunities by deploying cache
along the EBS stack, and discuss the goals and insights for
better cache algorithms.

The rest of this paper is organized as follows: §2 introduces
our architecture and dataset; §3 presents the basic statistics of
the dataset; §4 to §7 discuss the challenges and opportunities
posed by skewed tra#c on hypervisor load balancing and
throttle model, storage cluster load balancing, and EBS cache;
§8 discusses the limitation of our study; §9 discusses related
work, and §10 concludes the paper.
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2 Architecture & Dataset

2.1 Elastic Block Store (EBS) Architecture

One archetypical characteristic of today’s cloud storage—
including block store, object store and table store from vari-
ous vendors (e.g., Alibaba Cloud [1], Amazon AWS [2] and
Microsoft Azure [4])—is the compute-storage disaggregation.
In a nutshell, we can view this architecture as two sets of
clusters—namely compute and storage—connected by a high-
speed intra-DC network. Our EBS follows this philosophy.

Figure 1 illustrates the high-level architecture. In the com-
pute cluster, a Compute Node (CN) can host multiple Virtual
Machines (VMs) where each can further mount several Vir-
tual Disks (VDs). A VD, determined by user’s subscription
levels, can have one or multiple (up to 8) IO Queue Pairs
(QPs). The QP of VD is conceptually identical to the IO queue
pair in NVMe SSD [16], except the QP is virtualized by the
hypervisor. The QP of VD o$ers IO isolation and parallelism
to the VM, which is supported by NVMe virtualization frame-
works (e.g., SPDK [9] and QEMU [17]).

The hypervisor runs multiple Worker Threads (WTs) to
process the IO requests from the QP. Each WT is bound
to a speci"c CPU core and operates in a polling-mode for
ultra-low latency. The IO request issued by the VM is "rst
delivered to the VD’s QP. Then, the WT encapsulates the
IO into a RPC request (Remote Process Call) and forwards
it to the storage cluster via the frontend network. Here, a
round-robin based load balancer is used for the inter-WT
balancing.

Our storage cluster follows the design as [55]. Each storage
node runs a process called BlockServer (BS). BS works as a
proxy that translates the semantics of block IO into "le APIs
and further persists/retrieves data to/from the underlying
HDFS-like "le system. Speci"cally, in EBS, a VD’s Logical
Block Address (LBA) is partitioned into 32GiB-size segments
(Segs) to be managed by multiple BSs. Segment is actually
a kind of striping for load balancing and fault tolerance,
which is also utilized by other distributed storage systems
like HDFS [10], Ceph [50], and Amazon S3 [6].
Each BS stores the segment as a "le via the node-level

storage engine, called ChunkServer (CS). The CS is equipped
with multiple SSDs for persistence. Due to the append-only
nature, BS also needs to periodically perform garbage collec-
tion for space reclaiming. While BS and CS can be co-located
on the same storage node (SN), we do not enforce locality-
based data placement. Instead, the BS and CS communicate
through the backend network using RDMA [25].

2.2 Load Balancing and Cache in the EBS

The EBS stack includes multiple components such as the
end-host (i.e., compute and storage node) and the fabric (i.e.,
frontend and backend network). As shown in Figure 1, VD
IO goes through several software and hardware components

before being persisted to the disks. We refer to these com-
ponents collectively as the EBS stack. Along this path, we
have designed several mechanisms for load balancing and
caching including:
Inter-WT load balancer. Our hypervisor shares the same
design philosophy of the SPDK-vHost [54], a framework
designed for high-performance NVMe virtualization. Specif-
ically, VD’s queue pair (QP) is statically bound to only one
worker thread (WT), which is called the single-WT hosting.
Single-WT hosting can avoid the multi-thread lock when
accessing the same QP and reduce the CPU cache miss. Un-
der single-WT hosting, round-robin emerges as a common
choice for load balancing and multi-tenant fairness. Note
that the WT works in polling-mode and processes the IO
request of the bound QPs in turn.
Inter-BS load balancer. The inter-BS (BlockServer) load
balancer is the key to ensure the performance and reliability
of the storage cluster. Our balancer shares the same design
philosophy of Ceph’s metadata server balancer [50, 51] and
HDFS Balancer [10]. Speci"cally, it operates in a periodi-
cal fashion. For each period, the balancer checks whether
there exists BSs whose tra#c signi"cantly exceeds the av-
erage level of the cluster (i.e., exporters), and triggers the
migration accordingly. For each exporter, several segments
are migrated to the BS with the lowest tra#c in the cur-
rent period (i.e., importer). Besides, our balancer performs
migration based solely on the write tra#c considering the
write-dominance in the EBS system [33–35, 60]. We enclose
the pseudo-code of the balancer in Appendix A.
Cache. First, the native page cache in the VM’s operating
system can cache part of the IO requests. Second, we have
designed a data prefetching to cache the read requests. Specif-
ically, the BS detects whether there exists continuous large
block reads on a per-segment basis, and if so, the BS will
load the subsequent data from the CS (ChunkServer) into
the local memory. Data prefetching can only accelerate read
requests and saves the latency of accessing the CS.

2.3 Datasets

To monitor the EBS operation, we have developed a tracing
tool called DiTing. DiTing, similar to Google’s Dapper [43],
traces IO information across various EBS components. With
the help of DiTing, we collect three datasets for this study:
trace data, metric data and speci!cation data.
Trace data. Similar to Dapper [43], DiTing collects the IO
traces 2at a sampling rate of 1/3200. Each IO is identi"ed
by a unique TraceID and contains the following three types
of information. First, the trace records the IO-related infor-
mation, including op-code (R/W), IO size and LBA o$set.
Second, the trace records the EBS stack-related information,
including the compute node, VM, VD, WT, storage node, and

2A trace refers to a block IO issued by a VD. In this paper, we use trace and

IO interchangeably.
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Table 1. Format of the metric data. The two values separated by a slash (‘/’) refer to statistical value for read and write
tra#c, respectively.

Domain Physical Information User Information Record Unit Metric

Compute

Timestamp Cluster Node UserID VM VD WT QP Throughput IOPS

17:23:15 Clus-A 10.0.0.1 John A A-a 1 A-a-1 35 / 14 3200 / 9000

17:23:15 Clus-A 10.0.0.1 John A A-a 2 A-a-2 20 / 0 80 / 0

Storage

Timestamp Cluster Node UserID VM VD Segment Throughput IOPS

17:23:15 Clus-C 11.0.0.1 John A A-a A-a-3 21 / 13 3000 / 8000

17:23:15 Clus-C 11.0.0.2 John A A-a A-a-4 14 / 1 200 / 1000

Table 2. High-level summary of the collected datasets.

Statistic Value

Total number of user / VM / VD 10k / 60k / 140k

Median / Max number of VM per user 1 / 9879

Median / Max number of VD per user 2 / 59225

Total write / read tra!c (PiB) 21.7 / 6.5

Total write / read trace (million) 247.1 / 56.9

segment that a IO passes through; Third, the trace records
the latency of the IO across "ve major components of the
EBS stack, including compute node, frontend network, Block-
Server, backend network, and ChunkServer.
Metric data. Since sampled trace only provide a limited
perspective of the EBS IO tra#c, DiTing calculates second-
level statistics on the full-scale IOs (i.e., all requests). The
format of metric data is shown in Table 1. Speci"cally, the
metric data includes two sub-datasets, corresponding to the
compute and the storage domain. For the compute domain,
the metric data records the throughput and IOPS for each
QP-WT pair. Besides, the data includes VD, VM and tenant
to which the QP belongs (i.e., user information), as well as
the compute node and cluster to which the WT belongs
(i.e., physical information). The storage domain has a similar
format, except that the storage domain records the metric
for each segment.

Speci"cation data.As a supplementary, this dataset records
the user’s VM con"gurations, including the speci"cations of
each mounted VD (e.g., capacity, IOPS and throughput lim-
its), as well as the compute nodes hosting the VM. Moreover,
the dataset also records the applications running on each
VM. It should be noted that we are prohibited accessing the
users’ VM directly. However, we can infer the applications
by comparing the user’s IO to the IO of the sample VMs, i.e,
the VMs created by ourselves that run standard applications.

3 Dataset Overview

3.1 Baseline Statistics

We begin by presenting the high-level summary of the col-
lected datasets in Table 2. The dataset is collected on a 12-
hour daytime (from 10:00 to 22:00). Together, we obtain 310
million traces from 10k users, 60k VMs, and 140k VDs.

Then, we analyze the spatial and temporal distribution of
EBS tra#c. In Table 3, we aggregate the metric data at the
level of various EBS components, including compute node
(CN), virtual machine (VM), storage node (SN) and segment
(Seg). To quantify spatial distribution, we use the Cumulative
Contribution Rate (CCR) [33]. Taking CN level as an example,
“1%-CCR” refers to the proportion of tra#c contributed by
the top 1% of computing nodes to total tra#c.
Regarding the temporal distribution, we adopt the Peak-

to-Average ratio (P2A) [33]. The P2A is the ratio of the maxi-
mum to the average of the tra#c and can re!ect the extent of
tra#c bursts. We measure the P2A for each sample at a spe-
ci"c aggregation level. In Table 3, we use 50%tile to describe
the samples’ P2A distribution. The 50%ile here is to maintain
consistency with [33]. We perform the same analysis on data
from three data centers (DCs) to validate the generality of
our observations.

3.2 High-level Observations

Observation 1. EBS tra"c exhibits more severe spatio-temporal

skewness than the earlier studies. For the spatial skewness, we
observe extreme CCR values, indicating that a small fraction
of users contribute majority of storage tra#c. For exam-
ple, 1% of VMs contribute 75.4% and 42.6% of total read and
write tra#c in DC-3. Even though DC-2 shows the lowest
VM skewness, its 1%-CCR is still double than the previous
"nding (i.e., 1% of VMs generate 16.6% of total tra#c [33]).

In terms of temporal skewness, we observe that both read
and write tra#c exhibit strong volatility. For instance, the
50%ile P2A of VM’s read and write tra#c can reaches 30649.0
and 1094.5, which is 13619.5.8× and 173.8× to the results
in [33]. Additionally, compared to the average P2A of 2.1
reported in [35], our results also report much higher values.

Observation 2. The spatio-temporal skewness of read tra"c

is signi!cantly higher than the write. For DC-3, 1% of the
VMs contribute 75.4% of the read tra#c but 42.6% of the
write tra#c. And, the temporal !uctuation of VM’s read
tra#c is also prominent. The 50%ile P2A of the read tra#c
reaches 15813.1 which is 24.1× to the write. This "nding
holds across all three data centers. The read-write skewness
is diametrically opposed to the "nding in [33] where write
tra#c !uctuates more violent. The P2A of write and read is
6.29 and 2.55 as reported.
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Table 3. Baseline statistics of the metric data. CN: Compute Node; SN: Storage Node; Seg: Segment; CCR: Cumulative

Contribution Rate; P2A: Peak-to-Average Ratio. The two values separated by a slash (‘/’) refer to statistical value for read and
write tra#c, respectively.

Agg.

level

DC-1 DC-2 DC-3

1%-CCR 20%-CCR 50%ile P2A 1%-CCR 20%-CCR 50%ile P2A 1%-CCR 20%-CCR 50%ile P2A

CN 14.3 / 8.7 90.4 / 85.3 4970.9 / 804.0 28.4 / 2.4 88.4 / 36.7 10343.9 / 417.0 32.6 / 16.5 94.4 / 71.8 5134.2 / 428.7

VM 48.9 / 39.2 99.9 / 99.6 30649.0 / 1094.5 32.9 / 3.1 86.6 / 46.2 9141.7 / 412.2 75.4 / 42.6 99.4 / 94.2 15813.1 / 657.1

SN 2.4 / 1.8 38.1 / 29.9 6.6 / 2.5 3.9 / 4.4 40.0 / 38.3 3.9 / 3.1 2.8 / 1.9 33.9 / 28.2 3.9 / 2.9

Seg 40.0 / 26.7 99.4 / 93.7 97.2 / 30.0 54.7 / 47.1 99.5 / 96.4 125.6 / 100.0 55.9 / 38.6 99.8 / 96.0 100.0 / 47.1

Table 4. Skewness statistics by types of VM application.

App. 1%-CCR 20%-CCR Tra!c share (%)

BigData 10.6 / 11.4 86.0 / 79.8 37.4 / 39.6

WebApp 40.1 / 22.6 98.6 / 99.7 1.3 / 8.0

Middleware 45.5 / 28.7 93.0 / 87.9 17.0 / 20.5

File system 47.5 / 77.9 99.8 / 98.7 1.7 / 0.4

Database 51.9 / 41.5 92.3 / 85.8 23.4 / 15.7

App in Docker 60.0 / 40.7 91.4 / 81.6 19.2 / 15.6

Summary. We believe that the signi"cant divergence
from the previous "ndings [33, 35] stems from the scale and
coverage of the dataset. Lee et al. [33] conduct a similar study
on the storage tra#c. However, They collect data from only
262 VMs which are dedicated to Windows virtual desktop
with limited applications (e.g., mailer and Microsoft O#ce).
The VMs in our dataset run a variety of operating systems
and applications. Similarly, Li et al. [35] performed analy-
sis on two EBS production systems, including Alibaba [34]
and Tencent [56]. Even if Li et al. [35] have expanded up
to thousands VDs, the covered applications are still limited
considering the hyper-scale of the production system. For
example, the largest tenant in our dataset owns about 10k
VMs and 59k VDs.

To verify this, we further analyze the tra#c skewness by
types of applications. As mentioned in §2.3, the speci"cation
data includes the inferred application for each VM. Therefore,
similar to Table 3, we calculate the skewness statistics at the
VM-level by application types. Table 4 shows the 1% and
20%-CCR, as well as the tra#c share of the six types of
application.

We "nd that, for both read and write, BigData 3 showes the
highest tra#c share, but exhibit the least skewness (1%-CCR
at 10.6% / 11.4%). In contrast, Docker demonstrates the most
severe skewness, with 1% of VMs contributing 60.0% and
40.7% of the read and write tra#c, respectively. Thus, we
can conclude that the skewness varies signi"cantly across
di$erent applications, a detail missed by previous studies.

These observations motivate us to further investigate the
e#ciency of load balancing and cache mechanisms described

3BigData includes applications such as HBase, MapReduce, Tensor!ow, and

other big data related applications. See details in Appendix D.
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Figure 2. Load Balancing in the Hypervisor (§4). (a) The
WT-CoV of measured in various time scale; (b) CoV at three
aggregation levels. (c) Tra#c contribution of the hottest QP;
(d) The simulation results of rebinding; (e) / (f) The tra#c
of the hottest WT for node-b / node-r.

in §2.2. Considering the skewness of VM tra#c, we analyze
the three-tier tra#c distribution of “VM-VD-QP” within the
compute node, and provide design insights for the hypervisor
on load balancing (§4) and tra#c throttle (§5); Then, we shift
our focus on the skewness of segment tra#c. We revisit the
design of the inter-BS load balancer and summarize several
design insights in §6; Finally, in §7, we measure the skewness
at the VD’s LBA level. More importantly, we discuss the
design trade-o$s of deploying cache on the EBS stack and
the cache algorithm.

4 Load Balancing in the Hypervisor

4.1 Symptom

The tra"c is highly skewed across the worker threads under

the round-robin-based load balancer.
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As mentioned in §2.2, the queue pairs (QPs) are bound to
worker threads (WTs) in a round-robin manner to achieve
load balancing. We use the normalized Coe#cient of Varia-
tion (CoV) [19, 29] to quantify the tra#c skewness of WTs
denoted as WT-CoV. The CoV ranges in (0, 1], with larger
values indicating a greater degree of skewness.

We calculate theWT-CoV of read and write tra#c for each
compute node (CN) under various time scales (e.g., 1, 30 and
60 minutes). For instance, at 1-minute scale, we randomly
extract 10% of the 1-minute time windows from the total
observation time and calculate the WT-CoV. The results in
Figure 2(a) show that the tra#c ofWT is highly skewed under
various time scales. The median read and write WT-CoV are
0.7 and 0.5, respectively, at the 1-minute scale. Moreover,
the skewness of read tra#c is signi"cantly worse than write
tra#c. For the compute nodes with four WTs, when the CoV
reaches 0.2, on average, the tra#c share of the hottest WT is
36.3%, which is 2.6× to the coldest WT.

4.2 Root Cause

Then, we deeply analyze the tra#c distribution inside the
compute node, and categorize the nodes into three types
based on the skewness root cause:
Type I - Idle WTs. In this case, the total number of QPs is
smaller than that of the WTs. Thus, at least one WT remains
idle. Further, we "nd that 60.1% of Type I nodes are bare-
metal nodes with only one VMhosted. This implies that these
bare-metal VMs may not have high storage requirements,
e.g, only mount VDs with few QPs. The remaining 39.9%
of Type I are non-bare-metal, i.e, the node hosts multiple
VMs. Even so, we still observe idle WTs. In summary, the
unexpected low storage demands of users lead to the Type I
skewness.

As described in §3.2, the skewed VM tra#c indicates that
the tra#c distribution is largely determined by the hottest
VM. In our dataset, the average tra#c share of the hottest
VM is 86.4% and 75.0%, for read and write respectively. Thus,
we focus on the hottest VM to further break down the non-
Type I nodes to explain why the WT tra#c is still skewed
when the number of QPs is larger than the WTs.
Type II - Hottest VMwith single QP. For the Type II nodes,
the hottest VM has only one VD mounted, and the VD owns
only one QP. Due to the one-on-one binding between QP
and WT, the corresponding WT takes all the tra#c from
the hottest VM, leading to an inevitable hotspot. For Type
II nodes with four WTs, the average read and write tra#c
share of the hottest WT is 83.6% and 69.8%, respectively, but
the ideal tra#c share for each WT should only be 25%. The
root cause of Type II skewness lies in the fact that within
a compute node, a VM with only one QP is highly active,
leading to the corresponding WT becoming overloaded.
Type III - Hottest VM with multiple QPs. We further
analyze how the VM access multiple QPs by measuring the
“VM-to-QP” skewness, i.e., the CoV of QP tra#c within the

hottest VM (denoted as CoVE<2@? ). The "rst two columns of
Figure 2(b) depict the distribution of CoVE<2@? for read and
write, respectively. The results show that the CoVE<2@? also
presents high values, with the median for read and write
being 0.78 and 0.62, respectively. These results imply that
the tra#c within the hottest VM tends to concentrate on a
few QPs; in other words, the parallelism of multiple QPs is
under-utilized.

Note that the QPs within the VM may belong to multiple
VDs, hence, we delve into the tra#c distribution of “VM-VD-
QP”. To do this, we examine the “VM-to-VD” (CoVE<2E3 ) and
“VD-to-QP” (CoVE32@? ) skewness separately. The last four
columns of Figure 2(b) depict the distribution of CoVE<2E3

and CoVE32@? , respectively. We make the following observa-
tions from the results:

• First, “VM-to-VD” tra#c presents extreme skewness with
the median CoV of 0.97 and 0.96 for the read and write
tra#c. This phenomenon is understandable, as the system
disk may has lower tra#c than the data disk.

• Second, for the “VD-to-QP” tra#c, we also observe sig-
ni"cant inter-QP skewness. The median CoV reaches 0.39
and 0.81 for the read and write tra$c. We further discover
that the improper con"guration is the root cause of VD-
to-QP skewness. Speci"cally, a multi-QP VD works as an
NVMe SSD for the VM. Although the block-MQ [22] in the
Linux kernel supports the multi-queue feature of NVMe,
the default scheduling policy is “none”. This means the IOs
from one IO thread will be sent to only one queue. More-
over, multiple IO threads need to be bound to di$erent
CPU cores; if they runs on the same core, the multi-queue
feature is still underutilized.

Note that among the three types, Type III accounts for the
highest proportion at 78.9%, followed by Type II at 18.0%.
This indicates that in most cases, WT skewness is due to the
concentration of storage tra#c to a few QPs.

4.3 Known Techniques

One common practice is to improve the utilization of QP
parallelism. One can employ the Linux blk-MQ [22] to lever-
age the parallelism of NVMe multiple IO queues. Further,
the user can resort to software RAID [14] to balance the
workload among VDs. However, both practices require fun-
damental recon"guration on VM’s OS or users’ application,
thereby yielding high engineering e$ort. In addition, this
solution cannot solve the Type I and Type II skewness. Since,
for Type I, the number of QPs is less than the number of WTs;
for Type II, the hotspot VM has only one QP. In both cases,
increasing the QP parallelism will not work.
Another seemingly promising solution is to enhance vir-

tualization framework with periodical QP-to-WT rebinding
(e.g., FinNVMe [39] and LPNS [40]). By rebinding the QPs
to di$erent WTs, the system should avoid idle (i.e., Type I )
and overheated (i.e., Type II and Type III ) WTs.



Hey Hey, My My, Skewness Is Here to Stay EuroSys ’25, March 30–April 3, 2025, Ro!erdam, Netherlands

However, our further analysis suggests otherwise. First,
for certain compute nodes, the hottest QP contributes almost
all of the tra#c. Figure 2(c) depicts the CDF of the tra#c share
of the hottest QP. The results show that for write tra#c, 20.1%
of the nodes have their hottest QP contributing more than
80% of the tra#c. And for the read, the proportion increases
from 20.1% to 42.6%. This observation implies that to achieve
the inter-WT balance, the rebinding has to be performed at a
very high frequency, or even on a per-IO basis. However, as
discussed by Peng et al. [39], the overhead cannot be ignored
especially for NVMe virtualization.
Second, even if one is willing to rebind at a rather high

frequency, the tra#c of WT may still be skewed due to the
burst. We simulate the rebinding using the trace data to
evaluate its e$ectiveness. Speci"cally, for each 10ms period
(0.1× to the setting in [39]), we check if the tra#c of the
hottest WT is more than 1.2× to the coldest one. If so, we
swap the QPs bound to these two WTs. To evaluate the cost
and bene"t of rebinding, we de"ne: (1) the rebinding ratio:
the number of periods triggering rebinding divided by the
total number of periods; (2) the rebinding gain: the WT-CoV
before rebinding divided by the WT-CoV after rebinding. A
gain less than 100% indicates a more balanced tra#c after
rebinding.
Figure 2(d) shows the results of simulation. In the "gure,

each point represents a compute node, where the X-axis
represents the rebinding ratio, and the Y-axis represents
the rebinding gain. We can see that not all nodes achieve
positive gains, only 29.9% of nodes have the gain larger than
100%. Some nodes (indicated by the blue circle) have the gain
close to 100%, even though the rebinding ratio reaches 60%.
Other nodes (indicated by the red circle) can achieve large
rebinding gain of 1% with a rebinding ratio around 20%.
To further explore this counterintuitive result, we select

one node from both the blue and red circle, named as node-
b and node-r. Then, we plot the tra#c time series of their
hottest WT on a 10ms scale in Figure 2(e) and (f). Clearly, the
burst tra#c of node-b is much stronger than node-r. The P2A
of node-b reaches 80.6 which is 7.7× to node-r. For node-b,
the duration of tra#c burst can be less than 10ms. Thus, the
rebinding period should be further reduced to achieve load
balancing. As previously mentioned, extremely low period
impies unacceptable overhead [39].
It should be noted that the above results are based on

the trace data with a 1/3200 downsampling. One might be
concerned that downsampling could bias the results. Hence,
we indirectly validate our "ndings by examining the metric
data. Speci"cally, we measure the tra#c contribution of the
hottest QP within a compute node. We "nd that for 42.6%
of the nodes, the hottest QP contributed more than 80%
of the read tra#c. This implies that the substantial tra#c
contributed by a single QP requires a much higher frequency
of rebinding.

4.4 Possible Solutions & Challenges

Based on the above discussion, we assume one potential
solution is to perform load balancing on a per-IO basis. To
achieve this, the existing single-WT hosting should be re-
structured to multi-WT hosting, i.e., allowing multiple WTs
to share the tra#c of the hottest QP.
One challenge of multi-WT hosting is the overhead of

multi-thread locking. To reduce the synchronization over-
head, we may rely on the hardware support like FPGA.
First, FPGA supports e#cient hardware queue, such as FIFO
queue [7] and ring bu$er [24]; Second, FPGA can e#ciently
distribute data between hardware queues, utilizing mech-
anisms like AXI stream [11] and hardware-based sched-
uler [42, 44]. Nevertheless, deploying NVMe virtualization
on FPGA is a challenging task, as it requires careful consid-
eration in the division between hardware and software.

Another challenge is that the polling-mode ofWT coupled
with the round-robin bind can ensure a well multi-tenant
fairness. Even if a QP is hot, the other QPs bound to the same
WT can still be served, since the WT polls requests from
each QP in turn. Therefore, switching to multi-WT hosting
requires additional mechanisms to ensure fairness.

Key Takeaways. User’s storage tra"c often clusters in few

QPs of mounted VDs, challenging the existing round-robin

or rebinding-based load balancer. Instead of the current in-

line thread model, a dispatch model is essential. However,

software-based dispatcher falls short in achieving low over-

head. A hardware-based dispatcher (e.g., FPGA or ASIC)

presents a promising solution.

5 Tra!c Throttle in the Hypervisor

We, like many other cloud vendors [1, 2, 4, 5], o$er users
VMs and VDs with various speci"cations. To ensure Ser-
vice Level Objective (SLO), we impose tra#c throttle on the
VDs. Speci"cally, we place a cap both on the throughput and
IOPS for each VD. Once the throughput or IOPS exceeds the
threshold, additional IOs will queue in the hypervisor. Zhou
et al. [58] reveal that the IOPS throttling of AWS EBS [2] can
cause latency spike and signi"cantly impair the performance
of LSM store-based applications such as RocksDB. This "nd-
ing prompts us to re-examine the design of throttle model in
the hypervisor, considering the skewness at various levels
mentioned in §4.

5.1 Symptom

The performance of multi-VD VM is impaired by tra"c throttle

of a single VD, even when other VDs have available bandwidth.

Similarly, this issue arises when multiple VMs of a tenant reside

on the same compute node.

Figure 3(a) shows a real-world scenario where a VM with
32 VDs su$ers from single VD throttle. The red line repre-
sents the throughput of the throttled VD, and the blue line
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Figure 3. Tra!c Throttle in the Hypervisor (§5). (a) A
32-VD VM su$ers from single VD throttle; (b) The resource
available rate (RAR); (c) The CDF of write-to-read ratio under
throttle; (d) / (e) The reduction rate of throttle duration; (f)
/ (h) The lending gain of multi-VD VM / multi-VM node.

indicates the total throughput of the VM (i.e., the summed
tra#c of all mounted VDs). At around 25s, a burst hits the
throughput cap of the throttled VD (indicated by the red
dashed horizontal line). However, the VM’s total through-
put is far from the overall threshold (indicated by the blue
dashed horizontal line).

Simply put, when a VD is throttled, other VDs within the
VM likely have available throughput or IOPS. Similarly, we
have also observed such “available resource” when multiple
VMs of a tenant are placed on the same compute node (i.e.,
multi-VM node). Here, “resource” refers to the throughput or
IOPS, either of which can trigger the throttle upon reaching
the cap.

Next, we formulate the available resource and measure it
at scale.We denote theAvailable Resource (�') for amulti-VD

VM at time C as �'(C). The �'(C) is calculated as: �'(C) =
�0? −+" (C), where �0? is the summed cap of all mounted
VDs and +" (C) is the summed throughput (or IOPS). We
further de"ne the Resource Available Rate ('�') as the pro-
portion of available resource at time C :

'�'(C) =
�'(C)

�0?
=
�0? −+" (C)

�0?
(1)

The '�' ranges in (0, 100%] with values near 0 indicating
no available resource.

Figure 3(b) shows the '�' distribution for multi-VD VM
and multi-VM node during throttling. We can see that the
'�' exhibits much high values both for multi-VD VM and
multi-VMnode. Formulti-VDVM, themedian'�' of through-
put and IOPS is 61.6% and 74.7%, respectively. Similar results
can be observed for multi-VD node. To summarize, when
a VD is throttled, the available resource is nearly always
abundant. This renders a great opportunity, as long as the
tenant allows, to share the available resource among VDs.
Note that this observation also holds for multi-VM node.

5.2 Root Cause

Like other EBS vendors [1, 2, 4, 5], we aggregate read and
write tra#c to monitor the resource cap. Therefore, we fur-
ther analyze the contribution of read and write tra#c to
the throttle. Speci"cally, we calculate the normalized write-

to-read ratio (FA_A0C8>) when a VD is throttled, which is
de"ned as:

FA_A0C8> = (, − ')/(, + ') (2)

where,, and ' represent the throughput (or IOPS) of write
and read, andFA_A0C8> ranges in [-1, 1].
Figure 3(c) presents the CDF of FA_A0C8> separated by

throughput and IOPS. We make the following observations.
First, for both throughput and IOPS, the CDF shows signif-
icant increases near 1. In other words, write tra#c is the
main contributor of throttle. Second, only a small portion
of samples fall within the range of [−1/3, 1/3] 4 (11.7% for
throughput and 6.9% for IOPS). This indicates that the throt-
tle is primarily caused by tra#c from either read or write,
rather than both. Additionally, we observe that throttle by
throughput occurs muchmore frequently (14.3× higher) than
that by IOPS.

5.3 Potential Solutions & Challenges

Based on the observations in §5.2, an intuitive solution is
to place di$erent caps for read and write tra#c. However,
this requires the tenant to have accurate pro"ling of their
workloads. Even if most EBS vendors support elastic virtual
disks to accommodate !uctuating performance demands, the
scaling capability is still insu#cient. For example, AWS EBS
may requires hours to achieve scaling [3].

4A FA_A0C8> equal to 1/3 (−1/3) means that the write (read) tra#c is 2×

to the read (write).
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Given the abundant available resource, another method is
“resource pooling”. We can pool the purchased throughput
or IOPS across tenant’s VDs. Nevertheless, this can back"re
with VDs freely preempting resources from the pool and
blocking the IO of other VDs.

Hence, amore practical solution is “limited lending”, which
allows the throttled VD to harvest the available resources by
increasing its cap and decreasing the cap of other unthrottled
VDs. We "rst theoretically present the bene"ts of limited
lending. Suppose for a multi-VD VM, a VD is throttled at
time C . The throttled VD is allowed to lend an extra cap of
? × �'(C) from other unthrottled VDs, where ? ∈ (0, 1) is
the lending rate. The lent cap, i.e., ? × �'(C), allows us to
measure the Reduction Rate ('') of the throttle duration as
follows:

'' =
+� (C)

+� (C) + ? ×�'(C)
(3)

Clearly, the reduction rate falls within (0, 100%], with lower
rate indicating shorter throttle duration after lending. This
de"nition can also extent to the multi-VM node.

Figure 3(d) and (e) depict the distribution of the reduction
rate at various ? for multi-VD VM and multi-VM node. For
multi-VD VM, with ? = 0.8, we can observe a median re-
duction rate of 43.7% in throughput and 3.9% in IOPS, i.e,
the throttle due to IOPS can be greatly alleviated. And for
multi-VM node, we can still observe a clear reduction.
Although theoretically, the limited lending is e$ective,

reaping such bene"ts in practice remains challenging. In
the previous analysis, we implicitly assumed that the extra
cap has already been allocated before the VD is throttled.
However, the extra cap is allocated only after the throttle
during runtime. This can lead to a scenario where the VD
lending the cap out is throttled again.
To evaluate a more realistic limited lending, we design a

primary lending mechanism for the proof-of-concept. Specif-
ically, the limited lending operates in a periodic manner. In
each period, assume that a VD is "rst throttled at time C .
The throttled VDs can lend an extra cap of ? ×�'(C) from
unthrottled ones. Details of the lending mechanism are in
Appendix B.

We simulate the above mechanism on the metric data and
measure the Lending Gain for each multi-VD VM (or multi-
VM node). The lending gain is de"ned as (CF/> − CF)/(CF/> +
CF), where CF/> and CF are the total throttle duration without
and with lending. The lending gain ranges in (−1, 1), and a
value larger than 0 indicates that the throttle duration can
be reduced with lending.
Figure 3(f) and (g) show the distribution of lending gain

for multi-VD VM and multi-VM node under various lending
rates. The results show that the lending yields positive gains
in most cases. For multi-VD VM, 85.9% of the samples ex-
perience a positive gain with ? = 0.8. This observation also
holds for multi-VM node.
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Figure 4. Frequent Segment Migration (§6.1). (a) Pro-
portion of frequent migration under various time scale; (b)
Normalized migration interval under "ve importer selection;
(c) Mean squared error of "ve tra#c prediction methods.

However, even at a conservative lending rate (? = 0.4),
positive gains are not guaranteed. For multi-VD VM, 5.2% of
the samples still exhibit a negative gain. The primary lending
design may, in return, make throttle worse. The underlying
reason is that the VD that lends cap out may have a burst,
and hit the cap again.

Thus, a practical lending requires tra#c prediction to ad-
just the lending rate, ensuring the VD lending cap does not
get throttled again. However, predicting EBS tra#c is rather
challenging as discussed in [37]. Additionally, lending may
poses security issues by disrupting VD isolation. For example,
an attacker may launch side-channel attack by controlling a
compromised VD covertly consuming resources.

Key Takeaways. The hard-threshold throttle does not !t

users’ skewed tra"c. Hence, pooling the user’s purchased

bandwidth can e#ectively alleviate the long-tail caused

by throttle. However, it requires the hypervisor to predict

hotspots to set the dynamic threshold.

6 Load Balancing in the Storage Cluster

The inter-BS load balancer is crucial for maintaining the per-
formance and reliability of the storage cluster. Our balancer
operates on principles similar to the HDFS Balancer [10] and
Ceph’s metadata server balancer [50], balancing tra#c by
migrating segments between BSs (details in Appendix A).
When facing the skewed tra#c, we identify two symptoms
of the current balancer, namely frequent segment migration
(§6.1) and skewed read (§6.2).
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6.1 Frequent Segment Migration

6.1.1 Symptom. In certain storage clusters, we have ob-

served frequent but unnecessary segment migration.

Even for the load balancing, the migration cannot be exe-
cuted wildly, as the migration temporarily halts the service.
We measure the migration frequency of the current load
balancer as follows. First, we divide the 12-hour observa-
tion time into small time windows (e.g., 15s). Then, for each
time window, we check whether a BS has both incoming and
outgoing migrations. If so, we mark the these migrations as
frequent. After iterating all the time windows and BSs, we
actually divide the migrations into two subsets: frequent and
non-frequent.
We then calculate the proportion of frequent migrations

to the total migrations for each storage cluster. Figure 4(a)
shows the CDF of the proportion of frequent migrations
across all storage clusters. The red line indicates that 56.8%
of the clusters have no frequent migrations in 15s time scale
(i.e., the proportion is equal to 0). But in one cluster, the
proportion reaches a maximum as 59.2%. This suggests that,
in some clusters, segments are migrated out of a BS soon
after being migrated in, or vice versa.

6.1.2 Root Cause. Analyzing the tra#c of the storage
cluster with the most frequent migrations, we identify the
importer selection as the root cause. Currently, the balancer
selects the BS with the lowest tra#c in the current period
as the importer candidate. However, the rapid tra#c !uc-
tuation can turn the importer into a new hotspot. Ideally,
the importer should be the BS with the lowest future tra#c
growth.

To verify this, we build the balancer with various importer
selection methods and simulate the balancer on the metric
data. Speci"cally, we use the following importer selection
methods: (1) Random: randomly select a BS as the importer;
(2) Minimum tra"c: select the BS with the lowest tra#c as
the importer (current method); (3) Minimum variance: select
the BS with the minimum tra#c variance as the importer;
(4) Lunule [49]: Lunule uses the linear "tting to predict the
tra#c for the next period, and selects the BS with the lowest
predicted tra#c as the importer; (5) Ideal: directly select the
BS with the lowest tra#c in the next period as the importer,
since we know all the future tra#c in the simulation.

In the simulation, we record the timestamp when the seg-
ments are migrated out of a BS, and then calculate the nor-
malized time interval between two adjacent migrations. The
distribution of normalized migration interval is plotted in
Figure 4(b). We make the following observations. First, the
distributions of Random (S1) and Minimum tra"c (S2) are
almost identical, with median migration interval as 0.24. This
suggests that the current importer selection (S2) is ine$ec-
tive. Second, Lunule’s (S4) linear "t model can worsen the
situation, reducing the median migration interval to 0.14.

Lunule is designed for the load balancing of CephFS meta-
data server, where the workload !uctuation might be less
severe than the EBS. Thus linear "t may provide inaccurate
prediction; Third, Ideal (S5) can e$ectively extends the mi-
gration interval, with a median as 0.48, which is 2.0× to the
current balancer (S2).

6.1.3 Potential Solutions & Challenges. The discussion
above indicates that reducing the unnecessary frequent mi-
gration requires accurate prediction of the future tra#c.
However, the prediction is rather challenging in the pub-
lic cloud with varying applications. Mao et al. [37] claim the
de"ciency of both standard [23, 45] and machine learning-
based [46] method in predicting EBS tra#c (Finding 6 of
[37]). We reverify this on our dataset.

Recall that the balancer operates in a periodic manner. For
each period, we use four methods to predict the tra#c for
the next period on a per-BS basis, including linear "t [13],
ARIMA [8], XGBoost [18] and Transformer [47]. XGBoost
and Transformer, as machine learning models, require suf-
"cient data for training. Given the training overhead, it is
not practical to build the model for every period. Instead,
we build the model every 200 periods (referred as an epoch).
We use the model from the previous epoch to predict the
period tra#c of the current epoch. Linear "t and ARIMA,
as statistical models, can be updated every period. Detailed
implementations of the four prediction algorithms can be
found in Appendix C.
We evaluate the accuracy of the four prediction models

using Mean Squared Error (MSE) [15], and the results are
shown in the "rst four columns of Figure 4(c). We can see
that ARIMA (P2) achieves the lowest MSE and linear "t (P1)
has the highest error. Although ARIMA’s MSE is relatively
small, its predictions still deviate from the ground truth.
This validates that traditional prediction methods are not
e$ective.

The MSE of XGBoost (P3) and Transformer (P4) are nearly
the same and much higher than the ARIMA (P2). As claimed
by Huang et al. [28], Transformer can e$ectively predict the
workload in multi-tenant cloud platforms. This is contra-
dicted to our result. One possible reason is that our Trans-
former is updated on a per-epoch basis, the long update
interval may miss the recent tra#c !uctuation. Therefore,
we perform updating on a per-period basis, and present the
result as P5 in Figure 4(c). Clearly, at a higher update fre-
quency, Transformer can achieve a lower MSE. Additionally,
the parameter "ne-tuning is also an important factor, but
this is beyond the scope of this paper.

To sum up, deploying the prediction-based balancer in the
production system is rather challenging. First, traditional sta-
tistical models perform poorly. Second, for machine learning
model, a careful trade-o$ must be made between prediction
accuracy and retraining overhead. A viable approach is to
perform "ne-tuning on a baseline model, i.e., use the newly
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Figure 5. Balanced Write but Skewed Read (§6.2). (a)

2D-plot of read- and write-CoV of storage clusters. (b) His-
togram of average segment |AF_A0C8> | of storage clusters. (c)
Normalized CoV for read and write in cases of Write-then-
Read and Write-Only migration.

arrived tra#c to update the model for capturing the short-
term !uctuation. Third, there are additional constraints on
segment migration. For example, for reliability, the number
of segments carried by a BS is limited, and segments from the
same VD should be distributed across di$erent BSs. These
constraints further complicate the design of the balancer.

6.2 Balanced Write but Skewed Read

As noted in §2.2, our balancer performs migration solely
based on write tra#c. Given the EBS’s write dominance,
migration that considers both read and write may introduce
interference. In other words, migrating segments based on
read skewness can disrupt the write balance and trigger more
migrations. The rise of read-intensive applications (such as
AI training and big data analytics [20, 32, 48, 59]) motivates
us to reconsider the balancer of leaving the read migration
in the wild.

6.2.1 Symptom. Read tra"c exhibits more severe inter-BS

skewness compared to write tra"c.

We use the normalized CoV to measure the tra#c skew-
ness of BSs within the storage cluster. To compare that be-
tween read and write, we use the 2D-plot shown in Fig-
ure 5(a). Each point represents a storage cluster, with the
X-axis representing the CoV of write tra#c, and the Y-axis
representing the read tra#c. The color of the points repre-
sents the normalized write tra#c of the cluster, and the red
diagonal line is the reference line ~ = G .

We make the following observations. First, the skewness
of read tra#c is much worse than the write. 96.8% of the
points are located above the reference line, i.e., read-CoV ≥

write-CoV. Second, as the write tra#c increases, both write-
CoV and read-CoV decrease. This means that the balancer
solely based on write tra#c can also balance the read tra#c.
Third, as the write tra#c further increases, the points move
further away from the reference line. This shows that, when
the write tra#c is large, relying solely on the write tra#c
migration is not su#cient to further balance the read tra#c.

6.2.2 Potential Solutions. One concern of leaving the
read migration out is the interference between read and
write migration. Hence, we further analyze the segment’s
read and write behavior by measuring the absolute write-to-
read ratio, i.e., |FA_A0C8> |. In Equation 2, if |FA_A0C8> | is close
to 1, the segment is either read-dominant or write-dominant.
For each storage cluster, we calculate the 50%ile of seg-

ment’s |FA_A0C8> | and depict the histogram in Figure 5(b).
Note that, for each cluster, we only select the segments with
cumulative tra#c contribution more than 80% for statistic.
This is because the tra#c is contributed by only a small
portion of segments (see Table 3).
From the "gure, we observe that 85.2% of the storage

clusters have an 50%ile |FA_A0C8> | larger than 0.9. This in-
dicates that the read tra#c is 19× more than to the write,
or the other way around (i.e., write to read). To sum up, for
most of the storage clusters, the segments tend to be either
write-dominant or read-dominant. This observation can help
simplify the design of the balancer since migrations for reads
and writes can be conducted concurrently without concern
for interference.
To validate this "nding, we perform the following simu-

lation. Similar to §6.1.2, we select the cluster with the most
frequent migrations and choose the Ideal method for im-
porter selection. We calculate the normalized CoV for read
and write tra#c in each migration period using two algo-
rithms: (1)Write-then-Read: migrate write tra#c "rst, then
the read tra#c; (2) Write-Only: migrate only write tra#c.

Figure 5(c) shows the CoV for read and write tra#c under
the two algorithms. First, as expected, the skewness of read
tra#c is signi"cantly alleviated by theWrite-then-Read mi-
gration. Second, surprisingly, the migration of read tra#c
does not intensify the skewness of write tra#c but actually
alleviates it. We speculate that the read migration inciden-
tally randomizes the segments with smaller write tra#c,
making the write tra#c more balanced.

Key Takeaways. The heuristic of selecting the tra"c im-

porter by the historical minimum can be easily broken by

the volatile tra"c. The balancer needs to be prophetic and

avoid the potential hotspots. However, predicting hotspots

can be rather challenging. Even if deep learning o#ers bet-

ter accuracy, it requires further exploration to manage the

training overhead.



EuroSys ’25, March 30–April 3, 2025, Ro!erdam, Netherlands Haonan Wu et al.

0

25

50

75

100

64 128 256 512 1024 2048

Block size (MiB)

A
c
c
e
s
s
 r

a
te

 (
%

)

(a) Access rate of the hottest block.

0

25

50

75

100

64 128 256 512 1024 2048

Block size (MiB)
B

lk
. 

P
ro

p
. 

(%
)

(b) The hottest block to LBA.

0.03
0.10
0.30
1.00

−1.0 −0.5 0.0 0.5 1.0
Write−to−read ratio

C
D

F

64 512 2048

(c) FA_A0C8> of the hottest block.

0.00
0.25
0.50
0.75
1.00

0 25 50 75 100
Hot rate (%)

C
D

F

64 512 2048

(d) Hot rate of the hottest block.

Figure 6. Cache across the EBS Stack (§7). (a) Access rate
of the hottest block under various block size; (b) Proportion
of the VD’s hottest block size to the LBA; (c)Write-to-read
ratio of the hottest block; (d) Hot rate of the hottest block.
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Figure 7. Cache across the EBS Stack (§7). (a) Cache hit
ratio under three cache algorithms; (b) / (c) Latency gain of
CN and BS-cache for read / write requests; (d) Cache space
utilization of CN and BS-cache.

7 Cache Across the EBS Stack

This section delves into the spatio-temporal skewness at the
VD’s LBA level. Previous studies [34, 35], under a smaller
scale, show that the VD’s IO tends to concentrate on a small
proportion of the LBA. In this section, we "rst re-examine

this "nding at a larger scale. More importantly, we discuss
several design insights for employing the cache across the
EBS stack, including choices of algorithms, potential loca-
tions and trade-o$s.

7.1 Symptom

The VD’s IO still shows signi!cant spatio-temporal hotspots on

the LBA level at large scale.

For each VD, we divide its LBA into "xed-size blocks,
and calculate the access rate of each block. We refer to the
block with the highest access rate as the VD’s hottest block.
Figure 6(a) presents the access rate of the hottest block under
various block size, and Figure 6(b) shows the proportion of
the block size to the VD’s LBA size.
Figure 6(b) shows that the 64 MiB block constitutes only

3.0% of the LBA in the median term, yet the access rate can
reach 18.2% as shown in Figure 6(a). This observation holds
true with larger block sizes. Therefore, the VDs show obvious
hot spot at LBA level, which is coherent with the "ndings
in prior studies [34, 35]. Even with page cache in the VM,
signi"cant hotspots are still observed.

7.2 Root Cause

We now demonstrate the access pattern of the hottest block
by analyzing its write-to-read ratio and temporal continu-
ity. In Figure 6(c), we calculate the write-to-read ratio (de-
"ned in Equation 2) of the hottest block for each VD and
plot the CDF under various block sizes. We make the fol-
lowing observations. First, most of the hottest blocks are
write-dominant. For the 64MiB block, 93.9% of the hottest
blocks have aFA_A0C8> greater than 1/3. Namely, write traf-
"c is twice as much as that of the read. Second, only 5.5% of
the hottest blocks are read-dominant (i.e.,FA_A0C8> ≤ −1/3).
To conclude, the data prefetching mentioned in §2.2 has lim-
ited e$ects because writes, which can be dominant, are not
bu$ered in the pre-fetching cache.
Then, we measure the temporal continuity of the VD’s

hottest block. Assume that the hottest block of a VD has a ?%
access rate during the observation time (e.g. 12 hours). We
recalculate the access rate of this hottest block over a shorter
window (e.g. 5 minutes), and count the percentage of the
time windows whose access rate exceeds ?%. We name this
percentage as the hot rate of the hottest block. Figure 6(d)
shows the CDFs of the hot rate under various block sizes.
The results show that the hot rate approximately follows a
Gaussian distribution with an average of 50.0%. This result
implies that the hottest block of the VD has well temporal
continuity.

7.3 Potential Solutions & Challenges

The temporal continuity and write-dominance of the hottest
block prompt us to reconsider the design of cache algorithm
(§7.3.1) and its location (§7.3.2).
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7.3.1 Cache Algorithm. A recent work, FrozenHot [41],
introduces the concept of “Frozen Cache”, which caches
the hot accessed data without eviction. This signi"cantly
reduces the overhead of cache management, especially in
high-concurrency scenario. We run a cache simulation on
the trace data to verify the feasibility of the frozen cache
(FC) in EBS. For comparison, we also introduce two classic
cache algorithms, including First-In-First-Out (FIFO), Least-
Recently-Used (LRU). Speci"cally, we set the cache’s page
size to 4 KiB, and the total size of the cache to match the size
of the hottest block. For the frozen cache, we set the cache
at the LBA where the hottest block is located, and do not
perform any page eviction.

For each VD, we calculate the cache hit ratio after simula-
tion. Figure 7(a) shows the distribution of the hit ratio under
various block sizes. We draw the following observations.
First, LRU and FIFO exhibit nearly identical distributions
across various block sizes. Given the write-dominance re-
vealed in §7.2, we infer that the hottest block may perform
sequential write, resulting in similar hit ratios for FIFO and
LRU. Second, when the block size is small (such as 64MiB),
the hit ratio of FC is signi"cantly lower than the FIFO and
LRU. However, when the block size increases to 2048MiB, the
hit ratio of FC is already comparable to the FIFO and LRU, and
its lower bound is signi"cantly higher. This is consistent with
the previous inference that larger cache space (block size)
can accommodate more sequential writes, thereby achiev-
ing a higher hit ratio. To conclude, frozen cache can indeed
achieve e$ective caching in EBS, but at the expense of a large
cache space.

Readers may be concerned that the 1/3200 downsampling
rate could a$ect the results. It is important to emphasize that
the hottest block in §7.3.1 is identi"ed on an hourly scale.
In other words, the identi"ed hottest block is long-term
existence (not instantaneous IO behavior). Therefore, we
believe that a higher sampling rate could make the hotspot
even more apparent, which does not contradict with existing
"ndings.

7.3.2 Cache Deployment Location. Although caching
in compute-storage disaggregation is not new [21, 52, 56,
57], deploying cache in EBS presents challenges. First, the
cache must adhere to the reliability requirement of EBS,
i.e., the writes must be persisted (with redundancy) before
con"rming success. In other words, the cache should be a
persistent cache (e.g., !ash or PMEM) rather than an in-
memory cache. Second, there are two available locations
for cache deployment: Compute Node (CN) and BlockServer
(BS). These two locations can have quite di$erent pros and
cons.

Next, we perform a detailed comparison of the two cache
locations in terms of latency gain and cache space utilization.
We assume the use of frozen cache [41] in the following
experiments. First, FC shows a hit ratio comparable to LRU

with larger cache space (2GiB in Figure 7(a)). This aligns
well with the need for persistent memory in EBS, as it can
provide larger space than volatile memory. Second, FC can
save more CPU resources by eliminating the maintenance
of metadata and the page eviction.
Latency gain. If the cache is deployed on the CN (i.e., CN-
cache), IO requests can save the latency of accessing the
storage cluster, while BS-cache can save the latency of ac-
cessing the ChunkServer. We de"ne the latency gain as the
ratio of IO end-to-end latency with and without cache. For
example, to obtain the 50%ile latency gain of BS-cache, we
"rst calculate the 50%ile latency with and without cache
as ?50�( and ?50F/> . Then, we derive the latency gain as
?50�(/?50F/> . Clearly, the latency gain ranges in (0, 100%],
with a smaller value indicating a greater improvement by
cache.
We compare the read and write latency gain for the two

cache locations in terms of 0%ile, 50%ile and 99%ile. The
results of read and write are separately shown in Figure 7(b)
and (c). First, for the read, neither CN-cache nor BS-cache
provides signi"cant latency gains, except that the CN-cache
o$ers gain for 0%ile latency. This is understandable as most
of the hottest blocks are write-dominant. Second, for the
write, CN-cache has a better gain than the BS-cache in 0%ile
and 50%ile. However, neither CN nor BS-cache is able to
improving the 99%ile latency. This is as expected since long-
tail IOs may not fall into the hottest block.
Cache space utilization. For a large-scale deployment, we
may su$er from cache under-utilization if over-provisioned.
We de"ne the cache space utilization to measure the cache
cost. Speci"cally, assume that the cache is deployed on a
per-node basis. As shown in Figure 6(a), not all the hottest
blocks have a high access rate. Hence, an intuition is to set up
the frozen cache only on the VDs whose hottest block access
rate exceeds a threshold. In the following experiment, the
threshold is set to 25%; and VD with a hottest block access
rate exceeding 25% is called cacheable VD.

As for "eld deployment, the cache space are normally the
same across nodes. Thus, the cache space utilization can be
quanti"ed by the number of cacheable VDs. For example,
for CN-cache, we count the number of cachable VD for each
compute node, since we know the node where each VD is
located (refer to Table 1). The BS-cache is similar. A wider
range in the number of cacheable VDs indicates more severe
under-utilization.

Figure 7(d) shows the distribution of cachable VD number
under various block sizes. The results show that the standard
deviation for CN-cache is signi"cantly higher than the BS-
cache. With 2048MiB block size, the standard deviation of
CN-cache is 21.0× to the BS-cache. To summarize, the lower
standard deviation of BS-cache indicates much less over-
provisioning.
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Both advanced CN-cache [53] and BS-cache [56] have
been proposed in academia. However, several challenges re-
main in applying them to the production EBS system. For the
CN-cache, although it o$ers better latency gain, the violation
of the design principle of compute-storage disaggregation in-
duces further issues. For example, the consistency of cached
data with the persistent data, and the overhead it creates for
the VM live migration. And for BS-cache, the latency gain is
signi"cantly weaker than the CN-cache.
For a cost-bene"t trade-o$, CN-cache and BS-cache can

be deployed in a hybrid manner. For example, CN-cache can
be deployed on a per-rack basis for low cost and use NVMe-
oF [27] for fast caching. Meanwhile, BS-cache can serve as a
backup for CN-cache to handle situations where CN-cache
space is insu#cient.

Key Takeaways. The VD’s IO shows apparent LBA hotspots,

leaving much headroom for caching. The emerging cache

algorithm, e.g., Frozen Cache, can deliver high hit ratio with

large cache space. This naturally meets the EBS demand for

persistent caching with high-capacity $ash or PMEM. For

the cost-bene!t trade-o#, hybrid cache deployment should

be considered.

8 Potential Limitation

Speci"c to our cloud. Throughout the paper, we focus on
studying the tra#c patterns and potential solutions in the
context of our EBS. It is possible that these "ndings may
not be directly applicable to similar services in other cloud
providers. However, we believe that the learned lessons can
reach a broader audience. First, our EBS share architectural
similarities with other cloud storage systems from high-level
design (e.g., compute-to-storage disaggregation) to low-level
implementation (e.g., IO virtualization framework). Second,
the tra#c patterns we observed, such as the “VM-VD-QP”
tra#c distribution and the LBA hotspots, are architecture-
independent. Given the large-scale of datasets, we believe
the access patterns, instead of being speci"c to our cloud,
shall re!ect a common trend. Moreover, we commit to release
the traces to motivate further research on the open-ended
challenges we have identi"ed or other related topics.
Trace-driven analysis. Due to the complexity of the stack
and the large scale, it is unlikely for us to validate potential
solutions on real clusters. Hence, our study relies on trace-
driven simulation to validate our "ndings and hypothesis.
We mainly focus on the context of algorithm design such as
the load balancing and the cache algorithm. In this context,
simulation on the production data is su#cient to provide a
well preliminary validation. Besides, simulation-based anal-
ysis has also been adopted in previous studies, such as the
cache simulation in [34, 35].

9 Related Work

Several prior works have made signi"cant e$orts to charac-
terize the tra#c of storage systems. Early research focused on
understanding the IO characteristics of single-machine stor-
age system, providing design insights for power saving [38],
"le system [26] and block cache [30]. Subsequent studies
shifted their focus toward pro"ling distributed storage sys-
tems in high-performance computing (HPC) scenario [31, 36].
Research e$orts on cloud block storage system are also abun-
dant [33–35, 60]. Lee et al. [33] characterized the behavior
of storage tra#c collected from 300 VMs dedicated to vir-
tual desktop. Li et al. [34, 35] analyzed block-level IO traces
collected from over 6,000 VDs, providing insights for load
balancing and cache design. Zou et al. [60] focused on the sta-
tistical modeling of IO inter-arrival times and self-similarity.

The studies most closely related to ours are [34] and [35].
Our study is distinguished in three key aspects. First, our
study is comprehensive. We measure multiple components
of the EBS stack, spanning across the compute and storage
clusters. The previous studies focused solely on either the
compute [33] or the storage [34, 35, 37]. Second, our study is
"ne-grained. We analyze tra#c down to the IO queue pairs
of virtual disks and the worker threads of the hypervisor.
Third, our study is large scale which includes approximately
60k VMs and 140k VDs. We believe this scale allows for a
more accurate pro"ling for large-scale EBS system.

10 Conclusion

In this paper, we conduct a large-scale analysis on the tra#c
of Elastic Block Storage (EBS) system. We characterize the
spatio-temporal skewness across multiple components of the
EBS IO stack. We reveal several symptoms in the hypervisor
and cluster management caused by tra#c skewness. For
each symptom, we conduct an in-depth analysis of its root
cause and derive several design insights on load balancing,
throttle mechanism, and cache deployment. Additionally, we
further validate the potential solutions through simulation
experiments.
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A Inter-BS Load Balancer

In our EBS system, the inter-BS load balancer shares the
same design as the HDFS Balancer [10] and the CephFS MDS
balancer [50]. As shown in Algorithm 1, our balancer oper-
ates in a periodic manner, detecting high-tra#c BlockServer
(BS) and migrating segments to low-tra#c BS.

Algorithm 1 Inter-BS balancer

Require: BS tra!c: F 8
9 denotes the total write tra#c of

�( 9 , 9 ∈ {1, . . . , =} in period 8;
Segment tra#c: FB (:)89 denotes the write tra#c of

segment−: of �( 9 . By de"nition, F 8
9 =

∑< 9

:
FB (:)89 ,

where< 9 is the number of segments in 1B 9 ;
Segment-to-BS mapping: (462�( .

1: for each period 8 do
2: avg8 ← (

∑=
9=1F

8
9 )/=; // the cluster’s average tra#c

3: for each bs9 ∈ BS Set do
4: if F 8

9 ≥ 1.2 × avg8 then

5: sorted_segs← sort({FB (:)89 }, descending);

6: mig_segs← the top-G segments whose summed
tra#c exceeding 0.2 × 0E68 ;

7: importer ← argmin: {F
8
:
}; // select the BS

with the minimum tra!c as the importer

8: F 8
8<?>AC4A ← F 8

8<?>AC4A + sum(mig_segs);

9: Modify the (462�( ;
10: end if

11: end for

12: end for

B Limited Lending

We design a primary limited lending for proof-of-concept.
The Algorithm 2 is described in the context of the multi-VD
VM, and a similar design is applied to the multi-VM node.

C Implementation of Tra!c Prediction

In §6.1.3, we emply four tra#c prediction algorithms. The
implementation of each algorithm is as follows. Assume the
balancer operates in a 30-second period.
• Linear Fit.We use the LinearRegression from Python’s
sklearn library. We utilize the data from the past four mi-
gration periods to build a linear regression model for each
BS, and predict the tra#c for the next period.
• ARIMA. Similar to linear "tting, we build ARIMA models
on a per-BS basis. The ARIMAmodels are implemented using
Python’s statsmodels library, and the pmdarima library is
used for automatic parameter searching.
• XGBoost. For XGboost, we train a model for each BS on a
per-epoch basis, i.e., retraining every 200 periods. We feed
the model with 120s historical tra#c, and predict the tra#c
of the next 30s. Since XGBoost is a single-output model,
future tra#c is predicted using a rolling forecast method,

Algorithm 2 Limited Lending

Require: VD tra!c: +�8 (C) denotes the throughput (or
IOPS) of +�8 at timestamp C ;
VD cap: �0?8 denotes the throughput (or IOPS) cap of
+�8 ;
Lending ratio: ? ∈ (0, 1)

1: for each VD 8 do

2: for each timestamp C do
3: if exists VD8 (C) ≥ �0?8 then

4: // Calculate available resource de"ned in §5.1
5: �'(C) ←

∑
�0?8 −

∑
+�8 (C)

6: �0?8 ← �0?8 + AR(C)
7: for each 9 ≠ 8 do

8: // Decrease the Cap of other VDs
9: �0? 9 ← �0? 9 − (+� 9 (C) −�0? 9 ) × ?

10: end for

11: end if

12: break;
13: end for

14: Init {�0?8 }; // Initialize the CAP of the VD
15: end for

Table 5. Application types of collected VMs.

Type Application

BigData
Hbase, Flink, Hadoop, Tensor!ow,
Alibaba E-MapReduce, Alibaba Elastic HPC

WebApp
Nginx, Jenkins, Git,
Crawler, Game, httpd

Middleware
Elasticsearch, Kafka, etcd, Zookeeper,
Dubbo, Nacos, Nomad, SLB

File system FTP, CPFS

Database
Redis, MySQL, Postgress, MsSQL, MongoDB,
Oracle, ClickHouse, Prometheus, In!uxDB

App in Docker K8S, Alibaba ECI, Alibaba ESS

where the predicted output serves as the new input. XGBoost
is implemented by the GradientBoostingRegressor from
the Python sklearn library.
• Transformer. Unlike the above three methods, Trans-
former can establish a prediction model for all BSs. This is
due to the multi-input multi-output capability of deep learn-
ing model. Transformer is retrained on a per-epoch basis,
and predict the future tra#c for all BSs at once. We use
the Transformer model provided by PyTorch, with both the
encoder and decoder having 2 layers.

D Application types of the collected VMs

We categorize the applications of the collected VMs into
six main types based on their characteristics. The speci"c
applications included in each category are shown in the
Table 5.


